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◼ Our EagleMine:  Detect explainable anomaly pattern more effective  
and scalable for running linearly in # of nodes .

Anomaly detection Scalability

Suspicious MsgsSuspicious Users Time vs. # node of graph

EagleMine: vision-guided large graph mining
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identify suspicious micro-clusters
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• 2. Search the tree and get summarization of the histogram:        
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Vocabulary-based summarization model 
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◼ Vision-guided diagnosis & mining for large graph:

12Brain recognize object [J. DiCarlo et al Neuron’12]
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- Assignments:

- Model parameter:

- Outliers:  unassigned bins

Description:  For    node groups: 
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Node group suspiciousness score: 

3. Identify suspicious micro-clusters. 

Weighted probability KL distance with the majority island.

The majority island – Normal nodes DTM Gaussian Description

EagleMine algorithm part III
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Table I.  Dataset statistic information
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Related publications [J. McAuley, R. Pandey & J. Leskovec, KDD’15], [J. McAuley & J. 
Leskovc, WWW’13], [A. Mislove, M. Marcon et al, SIGCOM’07], [S. Fakraei et al KDD’15]

Most of datasets are public available at https://snap.stanford.edu/data/index.html

Table I.  Dataset statistic information

https://snap.stanford.edu/data/index.html
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Measure:  MDL (minimum Description Length)

The best model has shortest MDL.

Exp 1. Quantitative evaluation of summarization
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Measure:  MDL (minimum Description Length)

EagleMine achieves concise summarization of graph.

The best model has shortest MDL.

Exp 1. Quantitative evaluation of summarization
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DBSCANGmeans Xmeans

EagleMineWatershed STING

Sina_weibo user:  out-degree vs. hubness

Exp 2. Qualitative of identifying micro-clusters
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DBSCANGmeans Xmeans

EagleMineWatershed STING

Sina_weibo user:  out-degree vs. hubness

Exp 2. Qualitative of identifying micro-clusters

Watershed [L. Vincent PAMI’91], DBSCAN [M. Ester et al KDD’96], 

STING [W. Wang et al VLDB’97]
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EagleMine

STINGXmeans

Sina_weibo msg:     in-degree vs. authority

Gmeans

Watershed

Exp 2. Qualitative of identifying micro-clusters
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WatershedDBSCAN

Tagged friendship:    #triangle vs. degree

EagleMine

STING

Xmeans

Exp 2. Qualitative of identifying micro-clusters
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Suspicious Msgs

Sina Weibo dataset:  (user-retweet-msg) 

# user:    2.75M

# msg:     8.08M

# edge:    50.1M

Time: 
Nov. 1-30, 2013

Suspicious Users

Exp 3. Anomaly detection
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Suspicious Msgs

Sina Weibo dataset:  (user-retweet-msg) 

# user:    2.75M

# msg:     8.08M

# edge:    50.1M

Time: 
Nov. 1-30, 2013

Suspicious Users

GetScoop [M. Jiang et al PAKDD’14], SpokEn [B.Prakash PAKDD’10], 

Fraudar [B. Hooi et al KDD’16]

Exp 3. Anomaly detection
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Time vs. # node of graph

EagleMine time complexity:

𝒉𝒎𝒂𝒙: maximum of 𝑯;

𝝆: water-level step size;

C:  # of node group;

nnz(H): # of non-zero values of 𝑯;

T:  # of iteration of learning;

Exp 4. Scalability test
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Time vs. # node of graph

EagleMine time complexity:

𝒉𝒎𝒂𝒙: maximum of 𝑯;

𝝆: water-level step size;

C:  # of node group;

nnz(H): # of non-zero values of 𝑯;

T:  # of iteration of learning;

Exp 4. Scalability test
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Jellyfish structure anomaly pattern

User-Retweet-Msg Graph

user

msg

Exp 5. Network pattern discovery
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Jellyfish structure anomaly pattern
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Jellyfish structure anomaly pattern

User-Retweet-Msg Graph

user

msg

Exp 5. Network pattern discovery



Outline

◼ Introduction

◼ Overview

◼ Proposed Method: EagleMine

◼ Experiments

◼ Conclusion <<
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https://github.com/wenchieh/eaglemine

Automated summarization:

graph nodes distribution in correlated feature spaces

◼ EagleMine: vision-guided large graph mining

Effectiveness: describe and detect node groups,

and get visually sense-making results

Anomaly detection: spot explainable anomaly patterns

Scalability: runs linearly in # of graph node

Reproducible: open source code & data

Conclusion

https://github.com/wenchieh/eaglemine
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Thank you !

Source codes and datasets used in the paper are available at 
https://github.com/wenchieh/eaglemine2018/8/16

https://github.com/wenchieh/eaglemine

