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Abstract. In this supplementary document, we provide additional proofs
of theorems, datasets information, and experimental results, all of which
supplement the main paper [1].

A Proof of Lemma 9.

Here we give proof for the Lemma 9 in Section 3, that is, the densest subgraph
detection in a bipartite graph Ĝ can be reduced to the GenDS framework by
converting Ĝ to be a mono-partite graph.

Lemma 9. Given a bipartite graph Ĝ = (L ∪R,E) with |L|+ |R| = n, the
densest bipartite subgraph detection problem over Ĝ corresponds to the setting
that x = [y, z], where y ∈ {0, 1}|L|, z ∈ {0, 1}|R|, and P, Q ∈ Rn×n,
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where cL and cR are the node weight vectors for the nodesets L and R respectively,
I|L| is the identity matrix of size |L| × |L|, and I|R| is similar.

Proof. Let δ(x) = {i : xi = 1, i ∈ dne} for the indicator vector x, the selected
node subset as S = δ(x) = δ(y) ∪ δ(z), LS = δ(y), and RS = δ(z). Then,
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and xTQx = yT I|L|y + zT I|R|z = |LS |+ |RS | = |S|. Moreover, if DcL
= 0 and

DcR
= 0, xTPx = yTAz = |E(S)| for the unweighted graph Ĝ. �
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B Proof of Theorem 12 (Bigraph Spectral).

Here we provide the details of proof for the Theorem 12 in Section 4.

Proof. Given an asymmetric matrix Ar ∈ Rm×n, its singular value decomposition
is denoted as Ar = UΣVT =

∑K
i=1 σiuiv

T
i where uTi uj = vTi vj = 0 if i 6= j

otherwise 1 and Σ = diag(σ1, . . . , σK) for singular values σ1 ≥ · · · ≥ σK > 0; K
is the rank of Ar and K ≤ min{m,n}.

Given the non-zero vectors y ∈ Rm and z ∈ Rn, we only consider the case
with ‖y‖ = ‖z‖ = 1 for the quadratic optimization problem related to Ar, thus,
R(Ar;y, z) = 1

2y
TArz. As for the case where ‖y‖ 6= 1 or/and ‖z‖ 6= 1, we have

following result by using the normalized vectors ŷ = y√
yTy

and ẑ = z√
zT z

, i.e.,
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where the inequality follows from the Cauchy–Schwarz Inequality.

Let U = {ui; i ∈ dKe} and V = {vi; i ∈ dKe}, we discuss the following three
cases for the Theorem 12.

Case 1. If y = ui ∈ U and z = vj ∈ V, then
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2 , the equation holds only when i = j = 1.

Case 2. If y = ui ∈ U and z /∈ V, then
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For the other case where y /∈ U and z = vj ∈ V, we also have the similar result.

Case 3. If y /∈ U and z /∈ V.

We define the basis for any vector belonging to Rm as Bm = U ∪Ũ , where Ũ =
{uK+1, . . . ,um} is the NULL space of the matrix AT

r and ∀i, j ∈ dme, uTi uj =

0 if i 6= j otherwise 1. Similarly, the basis Bn = V ∪ Ṽ for Rn where Ṽ =
{vK+1, . . . ,vn} is the NULL space of Ar and ∀i, j ∈ dne, vTi vj = 0 if i 6= j
otherwise 1. The singular values for NULL space are zeros, i.e. σi = 0 for i > K.

Using the basis Bm and Bn, the vectors y and z then can be represented as
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where the last inequality can be achieved for the following property
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Therefore, we can conclude that for any non-zero vectors y ∈ Rm and z ∈ Rn,
R(Ar,y, z) ≤ σ1

2 , the equality holds if and only if y = u1 and z = v1.
Moreover, it is also easy to extend the above result to the general case for σk

where k > 1. �

C Datasets information.

In our experiments in Section 6 of the main paper, we used a variety of datasets
(40 in total) obtained from some publicly available sources, including Stanford’s
SNAP database [3], ASU’s Social Computing Data Repository [7], Network Repos-
itory [5], AMiner scholar datasets [6], and from Koblenz Network Collection [2].
Table 1 lists the detailed information about the real-world networks, where the
first cluster contains 32 monopartite graphs, and the second is some bipartite
graphs; we also consider the edge weights for some marked datasets in Table 1.

D Additional Experiments

As in Section 6 of the main paper, we measure the performance of SpecGreedy,
including the injection detection in Section 6.2 and the its scalability in Section
6.3. Here, we give the detailed experimental results as follows.
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Fig.1 shows the detection accuracy of each methods for detecting injected dense
subgraphs with different densities. As it shows, we can see that SpecGreedy
achieves equally high accuracy as Greedy and is better than SpokEn.

Fig.2 illustrates linear-scalability of SpecGreedy with respect to the different
size of nodes and edges for the twitter-ASU graph.

(a) Injection without camouflage (b) Injection with random camouflages

Fig. 1. Performance comparison for injection detection in the synthetic graphs. Some
dense subgraphs with different density are injected into graph; the solid and dash lines
correspond to two different subsets of amazon-Art data. SpecGreedy achieves similar
accuracy as the Greedy algorithm and outperforms SpokEn.

Fig. 2. The linear scalability of SpecGreedy. The time taken of SpecGreedy grows
linearly with # of nodes and # of edges in graph.
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Table 1. Summary of real world datasets used in experiment.

Name |V | |E| Content

soc-twitter [2] 41.7M 1.47B Social network
soc-Sinaweibo [5] 58.7M 261M Social network
com-Orkut [3] 3.07M 117M Social network
twitter-ASU [7] 11.3M 85.3M Social network
livejournal-MPI [4] 5.28M 76.9M Social network
ca-DBLP-NET [5] 1.31M 19.0M Co-authorship
ego-gplus [3] 108K 12.2M Social network
as-Skitter [3] 1.7M 11.1M Internet topology
web-BerkStan [3] 685K 6.65M Web
soc-Flickr [7] 80.5K 5.90M Social
road-CA [3] 1.97M 5.53M Road Net
com-WikiTalk [3] 2.39M 5.02M Communication
web-Google [3] 876K 4.32M Web graph
ca-Aminer [6] 1.56M 4.26M Collaboration
road-TX [3] 1.38M 3.84M Road Net
road-PA [3] 1.97M 3.08M Road Net
soc-Youtube [3] 1.13M 2.99M Social network
web-Stanford [3] 282K 2.31M Web graph
ca-DBLP2012 [5] 317K 1.05M Collboration
com-Amazon [3] 548K 926K Community
twitter-ICWSM [2] 820K 835K Social network
soc-Slashdot0902 [3] 82.2K 504K Social network
soc-Slashdot0811 [3] 77.4K 469K Social network
soc-Epinions [3] 75.9K 406K Social network
blogcatalog [7] 10.3K 334K Blog
ca-AstroPh [3] 18.7K 198K Collaboration
email-Enron [3] 36.7K 183K Communication
ca-HepPh [3] 12K 118K Collaboration
soc-Hamsterster [5] 2.4K 16.6K Social network
ca-GrQc [3] 5.2K 14.5K Collaboration
∗ca-Patents-AM [6] 2.08M 11.5M Co-authorship
∗ego-twitter [3] 81.3K 2.42M Social network

livejournal-group [4] 10.7M 112M Social network
cit-Patents-AM [6] 6.84M 54.0M Citation
cit-Patents [3] 3.77M 16.5M Citation
yelp-business [3] 86.4K 3.22M Rating
beerAdvocate [3] 33.4K 65.9K Review
∗weibo-retweet 10.8M 50.1M Social network
∗amazon-Good [3] 3.38M 5.84M Rating
∗amazon-Art [3] 28.3K 28.0K Rating

∗: We also consider the edge weights for these marked datasets.


