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Update
We notice that there are a huge number of deep transfer learning methods appear with new state-of-the-art results.
Hence, we add this section to keep track of the latest results. We add the results on Office-31, Office-Home, and
Image-CLEF DA datasets.

From the results, we can see that MEDA significantly outperforms all existing deep adversarial methods on Office-
Home dataset (by 4.2%). On Office-31 and Image-CLEF DA datasets, the improvement is marginal. However, note
that MEDA only needs ResNet to perform finetune on the source domaind data. Then, the finetuned model can easily
extract features for the source and target domain. Compared to other methods that need to train the whole model with
several extra hyperparameters to tune, MEDA is significantly improving the baseline results..

1. Office-31 dataset

Table 1: Classification accuracy (%) on Office-31 dataset by following protocol in [22] using ResNet50 features (deep
methods are with ResNet50 as backbone)

Method A→ D A→W D→ A D→W W→ A W→ D Average
cvpr16 ResNet-50 68.4 96.7 99.3 68.9 62.5 60.7 76.1
icml15 DAN [9] 80.5 97.1 99.6 78.6 63.6 62.8 80.4
nips16 RTN [11] 84.5 96.8 99.4 77.5 66.2 64.8 81.6
icml15 DANN [5] 82.0 96.9 99.1 79.7 68.2 67.4 82.2
cvpr17 ADDA [19] 86.2 96.2 98.4 77.8 69.5 68.9 82.9
icml17 JAN [12] 85.4 97.4 99.8 84.7 68.6 70.0 84.3
cvpr17 GTA [16] 89.5 97.9 99.8 87.7 72.8 71.4 86.5
aaai18 MADA [14] 90.1 97.4 99.6 87.8 70.3 66.4 85.2
cvpr18 CAN [21] 81.5 63.4 85.5 65.9 99.7 98.2 82.4
aaai19 JDDA [3] 82.6 95.2 99.7 79.8 57.4 66.7 80.2

ACMMM18 Our MEDA 86.2 85.9 72.3 97.4 73.4 99.4 85.8

2. Office-Home dataset:
3. Image-CLEF DA dataset:
Now the original supplementary:

1 Classification Accuracy on Office-31 Dataset
We check the performance of MEDA in another widely-used dataset: Office-31 [15]. Office-31 is a standard benchmark
for domain adaptation tasks in multimedia analysis. It consists of 4,652 images and 31 categories from three domains:
Amazon (A), Webcam (w), and DSLR (D). Each two domain can construct a domain adaptation task, leading to 6
tasks: A→ D, A→W, · · · , W→ D. We follow the protocol in [22] and evaluate all the methods in these tasks.

Table 4 shows the classification of MEDA and other state-of-the-art traditional and deep domain adaptation meth-
ods. Note that MEDA and other traditional methods used the DeCaf7 features, while deep methods used the original
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Table 2: Classification accuracy (%) on Office-Home dataset using ResNet50 features (deep methods are with
ResNet50 as backbone)

Method Ar→ Cl Ar→ Pr Ar→ Rw Cl→ Ar Cl→ Pr Cl→ Rw Pr→ Ar Pr→ Cl Pr→ Rw Rw→ Ar Rw→ Cl Rw→ Pr Avg
AlexNet 26.4 32.6 41.3 22.1 41.7 42.1 20.5 20.3 51.1 31.0 27.9 54.9 34.3
DAN [9] 31.7 43.2 55.1 33.8 48.6 50.8 30.1 35.1 57.7 44.6 39.3 63.7 44.5

DANN [5] 36.4 45.2 54.7 35.2 51.8 55.1 31.6 39.7 59.3 45.7 46.4 65.9 47.3
JAN [12] 35.5 46.1 57.7 36.4 53.3 54.5 33.4 40.3 60.1 45.9 47.4 67.9 48.2

CDAN-RM [10] 36.2 47.3 58.6 37.3 54.4 58.3 33.2 43.9 62.1 48.2 48.1 70.7 49.9
CDAN-M [10] 38.1 50.3 60.3 39.7 56.4 57.8 35.5 43.1 63.2 48.4 48.5 71.1 51.0

ResNet-50 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DAN [9] 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3

DANN [5] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
JAN [12] 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3

CDAN-RM [10] 49.2 64.8 72.9 53.8 62.4 62.9 49.8 48.8 71.5 65.8 56.4 79.2 61.5
CDAN-M [10] 50.6 65.9 73.4 55.7 62.7 64.2 51.8 49.1 74.5 68.2 56.9 80.7 62.8

MEDA 54.6 75.2 77.0 56.5 72.8 72.3 59.0 51.9 78.2 67.7 57.2 81.8 67.0

Table 3: Classification accuracy (%) on Image-CLEF DA dataset using ResNet-50 as features(deep methods are with
ResNet50 as backbone)

Method I→ P P→ I I→ C C→ I C→ P P→ C Avg
AlexNet 66.2 70.0 84.3 71.3 59.3 84.5 73.9
DAN [9] 67.3 80.5 87.7 76.0 61.6 88.4 76.9

DANN [5] 66.5 81.8 89.0 79.8 63.5 88.7 78.2
JAN [12] 67.2 82.8 91.3 80.0 63.5 91.0 79.3

CDAN-RM [10] 67.0 84.8 92.4 81.3 64.7 91.6 80.3
CDAN-M [10] 67.7 83.3 91.8 81.5 63.0 91.5 79.8

ResNet-50 74.8 83.9 91.5 78.0 65.5 91.2 80.7
DAN [9] 74.5 82.2 92.8 86.3 69.2 89.8 82.5

DANN [5] 75.0 86.0 96.2 87.0 74.3 91.5 85.0
RTN [11] 75.6 86.8 95.3 86.9 72.7 92.2 84.9
JAN [12] 76.8 88.0 94.7 89.5 74.2 91.7 85.8

MADA [14] 75.0 87.9 96.0 88.8 75.2 92.2 85.8
CDAN-RM [10] 77.2 88.3 98.3 90.7 76.7 94.0 87.5
CDAN-M [10] 78.3 91.2 96.7 91.2 77.2 93.7 88.1

CAN [21] 78.2 87.5 94.2 89.5 75.8 89.2 85.7
iCAN [21] 79.5 89.7 94.7 89.9 78.5 92.0 87.4

MEDA 79.7 92.5 95.7 92.2 78.5 95.5 89.0

images. From these results, we can observe that MEDA still achieves the best classification accuracy. This indicates
the effectiveness of MEDA over other methods.

2 Parameter Sensitivity
In order to check the regularization parameter sensitivity of MEDA, we run MEDA with a wide range of parameter
values for λ, η, and ρ on several selected tasks. Then we compare its performance with the best baseline method. The
results are in Figure 1. Those results indicate that MEDA can achieve a robust performance with regard to a wide
range of parameter values.

Specifically, the best choices of those parameters are: λ ∈ [0.5, 1000], η ∈ [0.01, 1], and ρ ∈ [0.01, 5]. To sum
up, the performance of MEDA stays robust with a large range of regularization parameter choice. Therefore, the
parameters do not need to be fine-tuned in practical applications.

Remark: Although MEDA is easy to use, and its parameters do not have to be fine-tuned, in addition, for research
purpose, we also interpret how to further tune those parameters. We choose parameters according to following rules:
1st, SRM on source domain is very important, so we tend to choose a small η to make sure MEDA does not degenerate.
2nd, distribution adaptation is inevitable in SRM, so we choose a slightly larger λ to make it count. 3rd, we choose ρ
by following [1]. 4th, p is set following [2].
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Table 4: Classification accuracy (%) on Office-31 dataset by following protocol in [22] using DeCaf6 features (deep
methods are with AlexNet as backbone)

Method A→ D A→W D→ A D→W W→ A W→ D Average
SVM 55.7 50.6 46.5 93.1 43.0 97.4 64.4

TCA [13] 45.4 40.5 36.5 78.2 34.1 84.0 53.1
GFK [7] 52.0 48.2 41.8 86.5 38.6 87.5 59.1
SA [4] 46.2 42.5 39.3 78.9 36.3 80.6 54.0

DANN [6] 34.0 34.1 20.1 62.0 21.2 64.4 39.3
CORAL [17] 57.1 53.1 51.1 94.6 47.3 98.2 66.9
AlexNet [8] 63.8 61.6 51.1 95.4 49.8 99.0 70.1
DDC [20] 64.4 61.8 52.1 95.0 52.2 98.5 70.6
DAN [9] 67.0 68.5 54.0 96.0 53.1 99.0 72.9
RTN [11] 71.0 73.3 50.5 96.8 51.0 99.6 73.7

DCORAL [18] 66.4 66.8 52.8 95.7 51.5 99.2 72.1
DUCDA [22] 68.3 68.3 53.6 96.2 51.6 99.7 73.0

MEDA 69.5 69.9 58.0 94.0 56.0 96.8 74.0
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Figure 1: Parameter sensitivity on selected tasks: (a) λ, (b) η, (c) ρ.

3 Detailed Results of the Estimation of Adaptive Factor µ

The evaluation of the adaptive factor µ is important for the dynamic distribution adaptation. Other than the results in
the main paper (Section 4.5.2), we list all the results of our estimation of µ in both Table 5 and Table 6. The results
clearly demonstrated the effectiveness of our solution in quantitatively estimating the adaptive factor.

Although most of the µ̂ were close to µopt, we also noticed that there was relatively larger gap between µ̂ and µopt

on two tasks (i.e. C→ D and U→M). It is interesting to observe that the estimations on their opposite (i.e. D→ C and
M→ U if we change the source and target) were satisfactory. We think this is probably because of the high variance
of the target domain. We will continue to explore more properties of this phenomenon and improve the estimation.

Table 5: Comparison between µopt and µ̂ on Office+Caltech10 datasets using both SURF and DeCaf features
Feature Task C→ A C→W C→ D A→ C A→W A→ D W→ C W→ A W→ D D→ C D→ A D→W Avg

SURF
µopt 56.9 55.3 58.6 45.0 53.2 47.8 34.2 43.0 89.2 35.8 41.5 87.8 54.0
µ̂ 56.5 53.9 50.3 43.9 53.2 45.9 34.0 42.7 88.5 34.9 41.2 87.5 52.7

Performance
Variation -0.7% -2.5% -14.2% -2.4% 0.0% -4.0% -0.6% -0.7% -0.8% -2.5% -0.7% -0.3% -2.4%

DeCaf
µopt 93.4 95.6 91.7 87.4 88.1 91.7 88.0 93.2 99.4 87.6 93.2 98.0 91.2
µ̂ 93.4 95.6 91.1 87.4 88.1 88.1 93.2 99.4 99.4 87.5 93.2 97.6 92.8

Performance
Variation 0.0% 0.0% -0.7% 0.0% 0.0% -3.9% +5.9% +6.7% 0.0% -0.1% 0.0% -0.4% +1.8%
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Table 6: Comparison between µopt and µ̂ on USPS+MNIST and ImageNet+VOC2007 datasets
Task U→M M→ U V→ I I→ V AVG
µopt 76.8 89.4 81.2 67.6 78.8
µ̂ 72.1 89.5 74.4 67.3 75.8

Performance Variation -7.20% +0.14% -0.58% -1.33% -3.8%

4 Detailed Results of Empirical Convergence Analysis
We also validate the convergence of MEDA through empirical analysis. We run randomly selected tasks of Of-
fice+Caltech datasets and all tasks of USPS+MNIST / ImageNet+VOC datasets. The total iteration number is set
to be T = 20. Figure 2 presents the results. From those results, we can clearly see that MEDA could reach a steady
performance in only a few (T < 10) iterations.
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Figure 2: Empirical convergence analysis on all datasets.

5 Analysis of Pseudo-labeling
We understand the importance of pseudo-labeling. If the base classifier is very weak, or the pseudo labels are not
confident, will that affect the results?

We validate the the robustness of the pseudo-labeling through experiments. We use different base classifiers: 1-
NN, 3-NN, SVM-c10, SVM-c100, and Random guessing. Since different classifiers has different learning abilities and
will lead to different pseudo-labeling results, we see how that will affect the final results of the MEDA method. The
experimental results are in Figure 5 and Table 7.

According to these results, although different classifiers are used to generate different confidence of the pseudo-
labeling, our MEDA is significantly robust to the classifiers. Therefore, MEDA is very easy to use. (Even random
guessing could lead to comparable performance. However, since random guessing is not a technical method, we prefer
to use 1-NN)

Table 7: Results of different base classifier used in MEDA.
Base classifier Accuracy of base classifier Accuracy of MEDA

1-NN 45.20 56.99
3-NN 45.41 55.64

SVM-c10 31.62 54.90
SVM-c100 52.30 55.84

Random 9.60 55.53
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