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1. Introduction

Visual domain adaptation aims to learn robust classifiers for the target domain by leveraging knowl-
edge from a source domain. Existing methods are facing two significant challenges:

e Degenerated feature transformation: feature distortion often happens; subspace learning is not
sufficient to reduce the distribution divergence.

o Unevaluated distribution alignment: existing methods fail to evaluate the different importance

of marginal and conditional distributions. Target

Our method: Manifold Embedded Distribution Alignment (MEDA)

e (&: Manifold feature learning

e /i: Dynamic distribution alignment
e f: Prediction function

o [?¢: Manifold regularization

MEDA works in both traditional and deep
frameworks.

argmin  £(f(g(x:)),yi) +nl|f|[% + ADs(Ds, Dt) + pRy(Ds, Dy)
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MEDA learns a domain-invariant classifier in Grassmann manifold with structural risk minimiza-

tion, while performing dynamic distribution alienment to quantitatively account for the relative
importance of marginal and conditional distributions.
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2.1 Manitold Feature Learning 2.2 Dynamic Distribution Alignment

We adopted Geodesic Flow Kernel (GFK) [1]
as the basic manifold learning method. GFK

The Dynamic Distribution Alignment (DDA)
is to tackle with the unevaluated distribution align-

tries to model the domains with d-dimensional “#E | ent challenge. The core is an adaptive factor to
subspaces and then embed them into G. Each -# dynamically leverage the importance of marginal and

-

(c) Target: Type Il

conditional distributions. The DDA Dy is formed by
linear combination of two distributions:

original subspace can be seen as a point in G.
Therefore, the geodesic flow {®(t) : 0 <t < 1}
between two points can draw a path for the two
subspaces. If we let S = ®(0) and &; = ®(1),
then finding a geodesic flow from ®(0) to ®(1)
equals to transforming the original features into
an infinite-dimensional feature space.

The new features can be represented as z
g(x) = ®(t)'x. The inner product of trans-
formed features z; and z; gives rise to a positive
semidefinite geodesic low kernel:

(b) Target: Type I

(a) Source

C
Dy(Ds,Dy) = (1= 1) Dy(Ps, P) + 1> DY (Qs, Qu)

c=1

where 1 € [0, 1] is the adaptive factor and c € {1,--- ,C'} is the class indicator. D¢(Ps, P;) denotes

the marginal distribution alignment, and D;@ (Qs, Q¢) denotes the conditional distribution alignment
for class c.
Taking the projected MMD, dynamic distribution alignment can be expressed as

D¢(Ds,Dy) = (1 — p)|
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The first quantitative calculation of u:

2.3 Learning

d s
C
dM + Zczl dc

0~1 ,dps - marginal A-distance,d,. : conditional A-distance |3

Using the representer theorem [2|, f becomes

3. Experiments

On Office31, Office-Caltech10, USPS, MNIST, ImageNet, and VOC2007 datasets, MEDA shows:

e Over 3.5% improvement in classification accuracy
e Over 11.6% of error reduction
e Over 50.0% drop of standard deviation

where 3 = (81,32, - ) € R(n+m)XL js the co-
eflicients vector and K is a kernel.
f can be reformulated as

. e 5 T Method | A—=D | A—-W DA | D—-W | WA | W=D | Average
J = arg oo (Y = B"K)A|[p +ntr(8” KpB) SVM | 557 | 506 | 465 | 93.1 | 430 | 974 | 644
JE€HK TCA | 454 | 405 | 365 | 782 | 341 | 840 | 531
+tr (8" K(AM + pL)Kpg) GFK | 520 | 482 | 418 | 85 | 386 | 875 | 50.1
SA 46.2 42.5 39.3 78.9 36.3 80.6 54.0
Setting 0f /03 = 0, we obtain the solution DANN 340 341 20.1 620 21.2 04.4 59.3
CORAL 57.1 53.1 S51.1 94.6 47.3 98.2 66.9
x —1 T AlexNet 63.8 61.6 S51.1 95.4 49.8 99.0 70.1
B" = ((A+AM+ pL)K + nl) " AY DDC | 644 | 618 | 521 | 950 | 522 | 985 | 706
_ DAN 67.0 68.5 54.0 96.0 53.1 99.0 72.9
It shows that MEDA can directly learn the la- RTN 71.0 73.3 50.5 06.8 51.0 90 6 73 7
bels of the target domain, rather than train an- DCORAL | 66.4 66.8 52.8 05.7 51.5 99.2 72.1
other classifier. DUCDA | 683 | 683 | 536 | 962 | 516 | 997 | 730
MEDA 69.5 69.9 58.0 94.0 56.0 96.8 74.0
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