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Abstract. This document supplements by giving detail information of EagleM-
ine algorithm, the proof of theoretical analysis for the time complexity, and details
on additional experiments.

1 EagleMine Detail Information

For the WaterLevelTree algorithm, we utilize following steps to refine the raw tree T :
Contract, Prune, and Expand, and the Fig. 1 illustrates intuitive pictorial explanation.

– Contract aims to remove the single-child nodes in T . This process is shown in
Fig. 1a, where the dashed lines with arrow depict that the single-child’s children are
linked to its parent, and the gray links are removed.

– Prune is to alleviate the noise peaks on some island. An example is shown at the
bottom right of Fig. 1b. The island α at water-level r contains fluctuation noises on
its top. When the water level raises to r′, these noises become three separated ‘tiny’
islands linking to their parent α. So we will remove these ‘noisy’ for smoothing.

– Expand includes some surrounding bins of an island to avoid over-fitting learning.
The expansion of node is illustrated with shadowed rings in Fig.1b. The node 3©
(light-blue part) is expand with 1-st step outer-peripheral gray bins. For the node
3©, the light-blue irregular part represents the original island area and the outer-
peripheral gray bins are expanded part in 1-st step as the pictorial depiction shows,
and the further expansion follows a similar process until it gets to above constraint.

In the TreeExplore algorithm for determining the optimal islands and their de-
scription, we search the tree T and get the summarizations by using statistical hypothesis
test as the selection criteria. The dashed lines with arrow in Fig. 1c depict the search
trace. Moreover, the islands α1 and α2 in Fig. 1c, which are physically close to each oth-
er, depicts our motivation for the stitch process, that means α1 and α2 can be described
with the same distribution rather than separately.

In the sequel, the above careful designed refinement empower EagleMine to better
recognize and summarize the node group distribution in the histogram.
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Fig. 1: Key steps in proposed EagleMine algorithms.

2 PROOF of Time Complexity In SEC. 3.4

For the histogram H, as we described before, hmax = maxH. Let nnz(H) denote the
number of non-empty bins inH and C be the number of clusters. We use gradient-descent
to learn the parameters in DistributionFit(·) of EagleMine algorithm, where we assume
that the number of iterations is T . So T is related to the differences between initial

and optimal objective values. Then the time complexity of EagleMine is: O(
log hmax

ρ
·

nnz(H)+C · T · nnz(H)).

Proof. First, WaterLevelTree is invoked by EagleMine as the first subprocedure, in
which we compare all nnz(H) non-empty bins with water level r in step 3, and then
do binary opening [5] to remove small blobs (noise) by checking non-empty ones in step
4, both of which cost O(nnz(H)). From steps 5 to 6, for each island, we connect its
children (# of islands < nnz(H)) to it, so the time cost equals to the number of links,
i.e. O(nnz(H)). Hence the whole iteration from step 2 to 7 takes O(τ ·nnz(H)), where
τ = log hmax/ρ. As a result, we get a tree T , whose height is τ and width is at most
nnz(H). The total number of links in that tree are less than τ ·nnz(H)). Afterwards,
the operation of contracting takes O(τ ·nnz(H)). In each tree level, the summation of
bins in islands is less than nnz(H), so the complexity of both pruning and expanding
process is also O(τ ·nnz(H)). Consequently, the costs of constructing the water-level tree
is O(τ ·nnz(H)).

In the TreeExplore algorithm, function DistributionF it(·) costs O(T ·nnz(H)),
where each gradient-descent cost O(nnz(H)), the number of training data. Since our
algorithm finds C micro-clusters when stops, the subtree with visited nodes by BFS
search on T has C leaves. Due to the contraction of WaterLevelTree algorithm at
step 8, each non-leaf node in the subtree has at least two children, hence the subtree has
at most 2 ·C nodes, which means the step 3 in TreeExplore have at most 2 ·C times
of choosing the largest island, conducting DistributionFit(·), and applying hypothesis
tests. The cost of statistical hypothesis test on each node (island) is linear of the number
of bins in the island, which is less than nnz(H). During stitching, we only test those
islands close to each other in a plane, which costs less than the above process on tree T .



EagleMine Supplement Document 3

Therefore, the time complexity of EagleMine is

O(τ · nnz(H) + 2C · (T · nnz(H) + nnz(H))) = O(
log hmax

ρ
· nnz(H) + C · T · nnz(H))

where C � nnz(H).

3 Additional Experiments

3.1 Experiments setting detail

To quantitative evaluate the summarization performance, we selected X-means [7], G-
means[6], DBSCANc̃iteester1996dbscan, STING [8] and EagleMine (DM) as the com-
parisons, their settings are listed as follows.
− X-means: initialize with k-means and 5 clusters.
− G-means: set max depth = 5, limiting no more than 16 clusters to avoid too many

clusters; set p-value= 0.01 which is insensitive.
− DBSCAN: set Eps=1, and use ‖hi − hj‖∞ as distance function; we searched MinPts

from the average number of nodes in a histogram bin until the max number by step
50, and manually select the one consistent well with human vision4 judgment.

− STING: c ≈ Minpts+1
πEps2

with DBSCAN’s tuned optimal MinPts and Eps for clusters as
initial, and refine the visual result by fine-tuning.

− EagleMine and EagleMine (DM): are our proposed EagleMine with DTM Gaussian
and whole multivariate Gaussian respectively.

In addition, the Minimum Description Length (MDL) is used as the measure for
summarization. The MDL lengths for the baselines are calculated as [2,3,4], while the
MDL of EagleMine is:

L = log∗(C) + LS + LΘ + LO + Lε

This description of model consists of following terms:
– The number of clusters requires log∗(C) bits. 5.
– The assignment S of distribution vocabulary to C groups requires LS = C · log (Y)

bits.
– Each DTM Gaussian need |θ| = F + (1+F )F

2 + 1 free parameters. If we have two
features, i.e., F = 2, then |θ| = 6 for 2D distribution. So its encoding requires |θ| · l0
bits, where l0 is the floating point cost. We used 4× 8 bits in our setting. The total
parameter code-length is LΘ = C|θ| · l0.

– The outliers O require LOOO bits to encode bin indices.
– The model error requires Lε bits. For a bin bbb in group (island) αi, the expected num-

ber of nodes is h̃=
⌊
2Ñi·P (bbb|θi)

⌋
. Then the original count can be accurately recovered

as h=h̃+ ε, Thus we encode the total description error as Lε=
∑
bbb(log∗ (h− h̃) + 1),

where 1 is the code length of the sign.

4 Since DBSCAN is manually tuned, we do not use OPTICS [1] to search parameters for
DBSCAN.

5 Here, log∗ is the universal code length for integers, defined as log∗(x) ≈ log2(x)+log2 log2(x)+
· · · . where only the positive terms are included in the sum. [4]
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3.2 Q2. Summarization Evaluation of EagleMine

We conduct extensive experiments on real dataset to verify the summarization perfor-
mance of EagleMine algorithm, the Fig. 2 provides more examples for qualitative eval-
uation on different datasets and vary feature spaces including out-degree vs hubness,
in-degree vs authority, and #triangle vs degree, etc.

As the Fig. 2 shows, the original histogram plots are given at the beginning of
each group following with label figures (only reflect the micro-cluster areas) of differ-
ent methods. Outliers (bins) are labeled with the blue color and ‘x’ marker. Different
colors represent different groups by corresponding methods. From original plots, people
will naturally expect that bins with the similar color (density) and jointed locations
should be in one group. Hence we can see that G-means and X-means produce a number
of groups, over-separating the groups recognized by human vision. Although manually
tuned DBSCAN and STING can capture the majority dense region in each plot, while
overlooking some suspicious micro-clusters, e.g., micro-clusters A© and C© in Fig. 2c.

Thus, EagleMine illustrates its advantages of recognizing groups, especially identify-
ing micro-clusters, which is more consistent with human vision.
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(a) In-degree vs Authority (b) Watershed label {4} (c) EagleMine label {5}

(d) Out-degree vs Hubness (e) STING label {4} (f) EagleMine label {3}

(g) #Triangle vs Degree

manually tuned para.

(h) DBSCAN label {3} (i) EagleMine label {6}

(j) In-degree vs Authority (k) X-means label {5} (l) EagleMine label {4}

Fig. 2: EagleMine visually recognizes better node groups than baselines in qualitative
comparison. ‘{·}’ gives the number of node groups recongnized by each algorithm. (a)-
(c): is in-degree vs. authority plot of Sina weibo data, which are message nodes corre-
sponding to user nodes in out-degree vs.hubness feature space. (d)-(f): is out-degree vs.
hubess plot for user-products online review in Yelp. (g)-(i): is #triangle vs. degree plot
of homogeneous graph for users from Tagged website. (j)-(l): is in-degree vs. authority
plot for the users to associated groups in Flickr.
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