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ABSTRACT

Given a graph with millions of nodes, what patterns exist in the

distributions of node characteristics, and how can we detect them

and separate anomalous nodes in a way similar to human vision?

In this paper, we propose a vision-guided algorithm, EagleMine,

to recognize and summarize graph node groups in feature spaces.

EagleMine hierarchically discovers node groups, and each group is

an internally connected dense area in some feature space. EagleM-

ine utilizes a water-level tree to capture group structures according

to vision-based intuition at multiple resolutions. EagleMine tra-

verses the water-level tree, applying statistical hypothesis test to

determine the optimal node groups that should be �tted along the

path. Moreover, EagleMine can identify anomalous micro-clusters

(i.e., micro-size groups), who exhibit very similar behavior in some

feature space, and deviate away from the majority. Experiments

on real-world data show that our method can recognize intuitive

groups as human vision does, and achieve the best performance

in summarization compared to baselines. In terms of anomaly de-

tection, EagleMine also outperforms well-known state-of-the-art

graph-based methods by signi�cantly improving accuracy in a mi-

croblog dataset.

1 INTRODUCTION

Given real-world graphs with millions of nodes and connections,

the most intuitive way to explore the graphs is to construct a scatter-

plot of graph nodes in coordinates of correlated features, known as

correlation plot [29, 47]. Usually a heat map of those scatter-plot

points is used to show their density, which is a two-dimensional

histogram [24]. In this histogram, people can visually recognize

nodes gathering into disjointed dense areas separately as groups

(Fig. 1), which help to explore patterns (like communities, lockstep

behaviors) and detect anomalies (e.g., fraudsters, attackers, fake-

reviews, outlier etc.) in a more interpretable way [13, 26].

In particular, a graph can represent friendships in Facebook,

ratings from users to items in Amazon, or retweets from users to

messages in Twitter. A snapshot of such graphs can have numer-

ous correlated features, e.g., degree, triangles, spectral vectors, and
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Figure 1: Heat maps (histograms) of correlation plots.

PageRank etc., which generate correlation plots by the combina-

tions of them. It becomes, however, labor-intensive to manually

monitor and recognize patterns from the snapshots of temporal

graphs. Moreover, if we include more features, say, 4 features, visu-

alizing and recognizing patterns becomes extremely di�cult.

This raises the following questions: Given a heat map (i.e., his-
togram) of the correlation plot of graph nodes in some feature space,
how can we design an algorithm to automatically
• recognize and monitor the node groups as human vision
does?
• summarize the graph nodes in the feature space and identify
suspicious micro-clusters?

‘Micro-cluster’ refers to relatively small group of people, that

exhibit very similar behavior in the feature space. In the paper we

demonstrate some of the possible feature spaces, namely

i out-degree vs hubness - Fig. 1a - this can spot nodes with

high out-degree, but low hubness score (i.e., they have many

outgoing edges to non-important nodes, probably, customers,

that paid them) [28].

ii #triangles vs degree - Fig. 1b - spotting a near-clique group

(too many triangles, for their degree), as well as star-like

constellations (too few triangles for such high degree) [27].

In this paper, we propose EagleMine, a novel tree-based min-

ing approach to recognize and summarize the node groups in a

correlation plot of graph nodes. EagleMine can identify anoma-

lous micro-clusters. Experiments show that EagleMine outperforms

baselines and achieves better performance both in quantitative (i.e.,

code length for compact model description) and qualitative (i.e.,

consistent with vision-based judgment) comparisons. EagleMine de-

tects a micro-cluster of hundreds of bots in a real-world microblog

data, Sina Weibo
1
, which presents strong signs of sharing unusual

login-name pre�xes, e.g., ‘best*’, ‘black*’ and ‘18-year-old*’, and

exhibiting very similar behavior in the feature space (see Fig. 2b).

1
One of the largest microblog websites in China
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(a) EagleMine summarizes graph nodes.
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(b) Micro-clusters highlighted.
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(c) EagleMine scales linearly.
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Figure 2: Our proposed EagleMine achieves e�ective results onmicroblog SinaWeibo data. (a) EagleMine summarizes the graph

nodes in a feature space with truncated Gaussian distributions, where we show the 1.5·Σ and 3·Σ ellipses. Σ is the covariance

matrix. The majority group (having the largest area and the most of nodes) in the middle is described by two overlapped and

truncated Gaussians. (b) highlights some micro-clusters, including a disconnected small network, and very suspicious micro-

clusters. A user name list on the right side shows the name patterns of bots in a micro-cluster, where 182x: ‘best*’ means 182

bots share unusual pre�x ‘best’. (c). The blue curve shows the running time of EagleMine, compared to a linear function, and

the green curve shows the generalization vocabulary (DM-Gaussian) of EagleMine. (d)-(h) are the results of recognizing node

groups by the baselines and our EagleMine respectively. A relatively good results ofWatershed is achieved bymanually tuning

the threshold for image background. The blue scattering points in (f)-(h) denote individual outlier nodes. DBSCAN and STING

need extensive tuning of parameters. Still, some micro-clusters of low density are not recognized.

In summary, the proposed EagleMine has following advantages:

• Automated summarization: EagleMine automatically sum-

marizes a histogram plot derived from correlated graph fea-

tures (see Fig. 2a). EagleMine recognizes node groups form-

ing disjonted dense areas as human vision does (see Fig. 2h).

• E�ectiveness: EagleMine detects interpretable groups, and

outperforms the baselines and even those with manually
tuned parameters in qualitative (see Fig. 2d-2h), and quanti-

tative experiments (see Fig. 6).

• Anomaly detection: EagleMine can spot, and even explain

anomalies on real data by identifying suspiciousmicro-clusters

(see Fig. 2b). Compared with the graph-based anomaly de-

tection methods, EagleMine achieves higher accuracy for

�nding suspicious users in Sina Weibo data.

• Scalability: EagleMine is scalable, with nearly linear time

complexity in the number of graph nodes, and can deal with

more correlated features in multi-dimensional space.

Reproducibility: Our code is open-sourced at https://github.

com/wenchieh/eaglemine, and most of the datasets we use are

publicly available online.

In Section 2, we provide notions and our proposed model. In

Section 3, we propose EagleMine algorithm for recognizing and

summarizing graph nodes. In Section 4, we present experimental

results. After discussing related work in Section 5, we o�er conclu-

sions in Section 6.

2 PROPOSED MODEL

Consider a graph G = (VVV ,EEE), where VVV is the node set and EEE
is the edge set. G can be either homogeneous, such as friend-

ship/following relations, or bipartite as users rating restaurants.

For the informal problem, as the introduction puts it, for graph

G and correlated features of nodes VVV, our goal is to optimize the

goodness-of-�t (GoF) of node distribution, and the consistency with

human visual recognition.

To estimate the density of scattering nodes in a feature space,

we construct a histogram by mapping nodes into bins of bucketized

features. The bandwidth (i.e., bin size) for each feature of the his-

togram can be selected according to the plug-in methods or kernel

density-estimators [46]. such as degree and number of triangles,

into bins with �xed bandwidth in logarithmic scale. Other continu-

ous features, such as spectral features (hubness and authority), are

evenly divided into similar sizes in logarithmic scale as well.

Notations for histogram:Generally, histograms can be viewed

asmulti-dimensional tensors that generalize vectors (1D histograms)

and matrices (2D histograms). Consider a F -dimensional histogram

H of size I1 × · · · × IF , namely, having F correlated features. Each

(i1, · · · , iF )-th bin of H has non-negative value hi1, · · · ,iF as the

number of nodes in that bin. in is the bin index of the n-th feature.

Di�erent from tensor, a histogram bin is an interval for one feature,

a rectangle if F = 2, a cube if F = 3, and a hyper-cube if including

more features. Hence the boundary for the (i1, · · · , iF )-th bin of

https://github.com/wenchieh/eaglemine
https://github.com/wenchieh/eaglemine
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Figure 3: Pictorial depiction of the concepts of our his-

togram formalization. The colored are indicates one bin, in

which the value is h.

histogram is an F ×2 matrixbbbi1, · · · ,iF . Each rowbbbin is an interval of

the in -th bin in n-th feature. Note that we may use h and bbb without

any index for brevity, if no speci�c indices are needed in context.

A pictorical view of the histogram is shown in Fig. 3.

To summarize the histogram of graph node feature more suc-

cinctly, we utilize some statistical distributions as vocabulary, being

able to describe the density and randomness properties of nodes

within its group, with some characteristic parameters. Therefore,

our vocabulary-based model on graph nodes consists of

• Con�gurable vocabulary: distributions Y for describing

node groups in a feature spaceH .

• Model parameters: Θ = {θ1, · · · ,θC } for vocabulary dis-

tribution term of C node groups (clusters).

• Assignment variables: S = {s1, · · · , sC } for the assign-

ment of distribution to each node group.

• Outliers: unassigned bins (indices) O for outlier nodes.

In terms of the con�gurable vocabulary Y, it can include all

suitable distributions, such as Uniform, Gaussian, Laplace, and

exponential distributions, that depends on actual applications.

3 OUR PROPOSED METHOD

Our method EagleMine is guided by the following traits of human

vision and cognitive system:

Trait 1. Human vision usually detects connected components,
which can be rapidly recognized by eyes despite substantial appear-
ance variation[14, 32].

This motivates us to identify each node group as an internally

connected dense area in the heatmap, and di�erent groups are dis-

jointed from each other, which guides the re�nement for smoothing.

Trait 2. Top-to-bottom recognition and hierarchical segmentation[5].
Humans organize basic elements (e.g., words, shapes, visual-areas)
into higher-order groupings to generate and represent complex hierar-
chical structures in human cognition and visual-spatial domains.

This suggests that organizing and exploring connected node

groups should be based on a hierarchical structure, as we will do.

Algorithm 1 describes the overall structure of EagleMine. It hier-

archically detects micro-clusters in the histogramH , and outputs

the optimal summarization including the model parameters Θ, and
assignment S for each node group, and outliers indices O. The

following subsections will elaborate each step in detail.

Algorithm 1 EagleMine Algorithm

Input: HistogramH for node features of graph G.

Output: summarization {S,Θ,O}.
1: Build a hierarchical tree structure T forH . . see section 3.1.

2: Describe node of T with the vocabulary. . see section 3.2.

3: Explore the tree T and use hypothesis test as metric to deter-

mine the best node groups, which are summarized by the model

parameters Θ and the assignment S, as well as the outliers O.

. see section 3.3.

4: return summarization {S,Θ,O}.

3.1 Water-level tree

In the histogramH , we imagine an area consisting of jointed pos-

itive bins (h > 0) as an island, and the other bins as water area.
Assume that we can �ood the island areas, making those bins with

h < r to be underwater, i.e., setting those h = 0, where r is a water
level. Afterwards, the remaining positive bins can form new islands

in condition of water level r .
To organize all the islands in di�erent water levels, we propose

a water-level tree structure (T ), in which each node represents

an island and each edge represents the relationship: where a child

island at a higher water level comes from a parent island at a lower

water level. Note that increasing r from 0 corresponds to raising

the water level and moving from root to leaves.

In a 2D histogram, islands are candidate groups for Trait 1; �ood-

ing process intuitively re�ects how human eyes hierarchically cap-

ture di�erent objects from the color histogramH , as Trait 2. For

example, the gradient colors in Fig 1a depict groups at di�erent

water levels.

The WaterLevelTree algorithm is shown in Alg. 2. We start

from the root, and raise water level r in logarithmic scale from

0 to loghmax with step ρ, to account for a the power-law-like

distribution of h. Let hmax = maxH . We use the binary opening
2

operator (◦) [18] for smoothing each internally jointed island, which

is able to remove small isolated bins (treated as noise), and also

separate weakly-connected islands with a speci�c structure element.

Afterwards, we link each island at current level rcurr to its parent

at lower water level rprev of the tree (see Fig. 4a). Finally, when r
reaches loghmax , the �ooding process stops, and we build a water-

level tree.

We propose the following steps to re�ne raw tree T :

Contract: The current tree T may contain many nodes with

only one child, meaning no new islands separated, which are re-

dundant. Hence we search the tree using depth-�rst search (DFS);
once a single-child node is found, we remove it and link its children to
its parent. This process is shown in Fig. 4a, where the dashed lines

with arrow depict that the single-child’s children are linked to its

parent, and the gray links are removed.

Prune: The purpose of pruning is to smooth an island which

has noise peaks on top of the island due to �uctuations of h in

neighboring bins. An example is shown at bottom right of Fig. 4b.

The island α at water-level r , contains �uctuation noises on the top.

2
Binary opening is a basic workhorse of morphological noise removal in computer

vision and image processing. Here we use 2 × · · · × 2︸       ︷︷       ︸
K

square-shape “probe”.
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Algorithm 2WaterLevelTree Algorithm

Input: HistogramH .

Output: Water-level tree T .

1: T = {positive bins inH as root}.

2: for r = 0 to loghmax by step ρ do

3: H r = assign h ∈ H to zero if logh < r .
4: H r = H r ◦ E. . binary opening to smooth.

5: islands Ar = {jointed bin areas inH r }.

6: link each island in Ar
to its parent in T .

7: end for

8: Contract T : iteratively remove each single-child island and

link its children to its parent.

9: Prune T : heuristically remove noise nodes.

10: Expand islands in T .

11: return T

So when water level raises to r ′, the noises become three separated

‘tiny’ islands, linking to their parent α . Hence we prune such child
branches (including children’s descendants) based on their total area
size: the ratio of sum of h in child bins over sum of h in parent bin, is
no more than 95%. The pruning branches are illustrated in Fig.4b

( 1○ and 2○).

Expand: We include additional surrounding bins to avoid over-

�tting for learning distribution parameters and to eliminate the

possible e�ect of uniform step ρ for logarithmic scale. Hence we

iteratively augment towards positive bins around each island by a step
of one-bin size, until islands touch each other, or doubling the number
of bins in original island. The expansion of node is illustrated with

shadowed rings in Fig.4b. For the node 3○, the light-blue labeled

irregular part represents the original island area and the outer-

peripheral gray bins are 1-st step expanded part as the pictorial

depiction shows, and the further expansion follows similar process

until it gets to the above constraints.

Note that in the Watershed formalization [43], the foreground of

H are de�ned as catchment basins for clustering purpose, and can

capture the boundaries between clusters as segmentation. We will

see in experiments (section 4.2), the segmentation in Watershed

approximates the islands in one level of tree T , with a threshold

parameter for background. STING also selects clusters in the same

level, and needs a density threshold. However, EagleMine has no

tuning parameters, and searches water-level tree to �nd a better

combination of islands with hypothesis test, which may from dif-

ferent levels (see section 3.3).

3.2 Describing islands

The vocabulary Y can contain any proper user-de�ned distribu-

tions. In the feature space that we may concern, we use multivariate

Gaussian as one of the vocabularies. Note that many node features,

such as degrees and number of triangles, typically follow a power-

law distribution. Hence some bins along histogram boundary may

have larger number of nodes (see the bottom bins in Fig. 1). Thus

truncated Gaussian distribution is a proper choice to describe such

a truncated ellipse as far as we known. Moreover, since bins inH

are discrete units, distributions must be discretized, namely, de�n-

ing a probability function in each bin instead of probability density

Null

Null

(a) Tree contract

𝑟

𝑟′

𝑟

𝑟′

𝛼

𝛼

(b) Tree prune and node expand

accept

reject

test for stitch

𝛼1

𝛼2

(c) Statistical hypothesis test and optimal islands search

Figure 4: Key steps in proposed algorithms.

function. Now the discretized, truncated, multivariate Gaussian dis-

tribution (DTM Gaussian for short) is de�ned as follows:

Definition 1 (DTM Gaussian). The probability function in a
bin with boundary matrix bbb is

P(bbb; µ, Σµ, Σµ, Σ,βββ) =

∫
· · ·

∫
βββ
ψ (xxx ; µ, Σµ, Σµ, Σ,βββ)dxxx

where xxx is F -dimensional variable, bbb,βββ ∈ RF×2, βββ is the truncation
bound, andψ (·) is density function of truncated normal distribution
with mean µµµ and co-variance ΣΣΣ.

For 2D histogram, βββ = [[0,+∞]; [0,+∞]]. With DTM Gaussian,

we can describe islands with shapes of lines, circles, and ellipses,

and their truncation. The red-yellow oval circles in Fig. 2a depict

some node clusters of DTM Gaussian described.

Observing themulti-mode distribution of islands (skewed triangle-

like island in Fig. 1a), we also add mixture DTMGaussian as another

vocabulary. In our data study, this triangle-like island exists in many

di�erent histogram plots, and contains the majority of graph nodes.

For example, Fig. 1a depicts users’ distribution over out-degree and

hubness. The power-law of out-degree makes the density decrease

along the vertical axis. Meanwhile, users with similar degree shares

similar hubness, forming a nearly normal distribution in horizontal.

Therefore, those majority users forms a triangle-like island in the

feature space, and we use mixture DTM Gaussian for it.

To decide the assignment S = {s1, · · · , sC } of vocabulary to

each island, we can use distribution-free statistical hypothesis test,

like Pearson’s χ2 test, or other distribution speci�ed approaches.

After vocabulary assignment, we use maximum likelihood es-

timation to learn the parameters θα ∈ Θ for a island α , which
θα = {µµµα ,ΣΣΣα , Ñα } and Ñα =

∑
(i1, · · · ,iF )∈α loghi1, · · · ,iF . For deno-

tation, we de�ne function DistributionFit(α , sα ) as learning pro-

cess which returns θα .
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Algorithm 3 TreeExplore Algorithm

Input: WaterLevelTree T

Output: summarization {S,Θ,O}.
1: Θ = ∅.
2: S = decide the distribution type sα from vocabulary for each

island in T .

3: queueQQQ = root node of T .

4: while QQQ , ∅ do . breath-�rst search (BFS).

5: α ← dequeue ofQQQ .
6: θα = DistributionFit(α , sα )
7: Hypothesis testHHH0 = bins of island α come from the distri-

bution sα .
8: if HHH0 is rejected then

9: enqueue all the children of α intoQQQ .
10: S = S \ {sα }
11: else

12: Θ = Θ + {θα }
13: end if

14: end while

15: Stitch and replace promising distributions in S, then update Θ.
16: Decide outliers O deviating from the recognized groups.

17: return summarization {S,Θ,O}.

3.3 Tree explore Algorithm

With the hierarchical water-level tree and describing vocabulary,

we can then determine the optimal node groups and their summa-

rization. The procedure is described in Alg. 3, where we explore

the tree with BFS, decide the distribution vocabulary sα for each

tree node (island) α , select the optimal islands by using hypothesis

test as a metric, and re�ne the �nal results with stitching in �nal.

In general, one can decide the assignment of distribution by Pear-

son’s χ2. However, we heuristically assign mixture DTM Gaussian

to the island with the largest number of nodes in each tree level,

and DTM Gaussian to other islands for simplicity.

BFS explore andhypothesis test:Afterwards, we search along

the tree T with BFS to select the optimal combination of clusters

(see step 4 to 14). Starting from the root node, we use the following

null hypothesis to decide whether to explore the children:

HHH0: the bins of island α come from distribution sα .

Due to the variability of the value of bins in each island, we have

tried Pearson’s χ2 test, BIC and AIC criteria but the extreme heights

made the test and other criteria unstable. Thus, we test an island

based on its binary image, which focuses on whether the island’s

shape looks like a truncated Gaussian or mixture. With projection

pursuit [23], we simplify the hypothesis test by projecting the bins

data to one dimension where the test can be apply. The author

of [19] also use this approach to perform standard Gaussian test

for determining the optimal k for k-means. And we accept the

null hypothesis only whenHHH0 is true for all axes projections. We

then use Quadratic class ‘upper tail’ Anderson-Darling Statistic

test
3
[12, 41] (with 1% signi�cant level) to test on all axes. If one of

the tests is rejected, the null hypothesis will be rejected.

If HHH0 is not rejected, we stop exploring the island’s children.

Otherwise, we further explore the children of island α . The dashed

3
It is useful to measure the GoF of the left-truncated Gaussian distribution.

lines with an arrow in Fig. 4c demonstrate this process. Finally, the

�nal optimal combination of islands to summarize the histogram is

achieved until the BFS search stops.

Stitch: Furthermore, some micro-clusters (islands) from di�er-

ent parents, e.g., α1 and α2 in Fig. 4c, are physically close to each

other. In such case, those islands, separated due to sparsity and

non-smoothness of data distribution or be over-split by Water-

LevelTree, can potentially be summarized by one distribution.

Therefore, we use stitch process in step 15 to merge them by hy-

pothesis test. We test and stitch every pair of such islands from

di�erent parents inT , until no changes occur.When there are multi-

ple pairs of islands that be merged at the same time, we heuristically

choose the pair with the least average log-likelihood reduction after

stitching:

(αi∗ ,α j∗ ) = argmin

i, j

Li + Lj − Li j

#points of αi and α j
where αi and α j are the pair of islands to be merged, L(·) is log-

likelihood of a island, and Li j is the log-likelihood of the merged

island.

Outliers and suspiciousness score: We assign the bins that

are close to a distribution (i.e., have probability at least 10
−4
) of a

island to the group. Other bins are outliers O.

Furthermore, since the only one majority island �tted by mixture

distribution contains the majority and normal nodes, we give the

suspiciousness of other islands by the weighted KL-divergence as,

Definition 2 (Suspiciousness). Given the parameter θm for
the majority island, the suspiciousness of the island i described by
distribution with parameter θi is:

κ(θi ) = log
¯di ·

∑
bbb

Ni · KL(Pθi (bbb) | | Pθm (bbb)),

where Pθ (bbb) is the probability in the bin bbb for the distribution

with θ as parameter, Ni is the number of samples in the island i , and
we use the logarithm of

¯di , average degree of all graph nodes in the

island i , as the weight based on the domain knowledge that if other

features are the same, higher-degree nodes are more suspicious.

3.4 Time complexity

Given the features associated with nodesVVV , the time complexity

for generating histogramH is O(|VVV |).
Let M be the number of non-empty bins in the histogram H ,

and C be the number of clusters. We use gradient-descent to learn

parameters in DistributionFit(·) of EagleMine algorithm, so we

assume that the number of iterations is T , which is related to

the di�erences between initial and optimal objective values, and

hmax = maxH as de�ned before. Then we have:

Theorem 3.1. The time complexity of EagleMine algorithm is

O(
loghmax

ρ
·M + C ·T ·M).

4 EXPERIMENTS

We design the experiments to answer the following questions:

1. Quantitative evaluation on real data: Does EagleMine give

signi�cant improvement in concisely summarizing the graph?

2. Qualitative evaluation (vision-based): Does EagleMine accu-

rately identify micro-clusters that agree with human vision?
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(a) In-degree vs

Authority

manually tuned para.

(b) STING label {2} (c) EagleMine label {6} (d) Out-degree vs

Hubness

(e) G-means label {15} (f) EagleMine label {2}

(g) Out-degree vs

Hubness

(h) X-means label {6} (i) EagleMine label {3} (j) #Triangle vs Degree

manually tuned para.

(k) DBSCAN label {3} (l) EagleMine label {6}

Figure 5: EagleMine visually recognizes better node groups than baselines in qualitative comparison. ‘{·}’ gives the number

of node groups recognized by each algorithm. (a)-(c): is in-degree and authority plot of Sina weibo data, which are message

nodes corresponding to user nodes in Figure 2. (d)-(f): uses Android apps’ rating data. (g)-(i): uses products online review in

Yelp. (j)-(l): uses homogeneous graph from Tagged website.

3. Anomaly detection: How does EagleMine’s performance on

anomaly detection compare with the state-of-art methods? How

much improvement does the visual-inspired info bring?

4. Scalability: Is EagleMine scalable with regard to the data size?

The data information used in our experiments is illustrated in

Table 1. The Tagged [17] dataset was collected from Tagged.com

social network website. It contains 7 anonymized types of links

between users, and here we only choose the links of type-6, which

is a homogeneous graph. The microblog Sina Weibo dataset was

crawled in November 2013 from weibo.com, consisting of user-

retweeting-message (bipartite) graph.

4.1 Q1. Quantitative Evaluation on Real Data

The comparison algorithms and their settings are listed as follows.

− X-means: initialize with k-means and 5 clusters.

− G-means: setmax_depth = 5, limiting no more than 16 clusters

to avoid too many clusters; set p-value= 0.01 which is insensitive.

− DBSCAN: set Eps=1, and use ‖hi − hj ‖∞ as distance function;

we searched MinPts from the average number of nodes in a

histogram bin until the max number by step 50, and manually

select the one consistent well with human vision
4
.

− STING: c ≈
Minpts+1

πEps2
with DBSCAN’s tuned optimal MinPts

and Eps for clusters as initial, and re�ne the visual result by

�ne-tuning.

− EagleMine and EagleMine (DM): are our proposed EagleMine

with DTM Gaussian and whole multivariate Gaussian respec-

tively.

Envisioning the problem of clustering as a compression prob-

lem, we use Minimum Description Length (MDL) as the metric to

measure the summarization as [7, 21] do. In short, it follows the

assumption that the more we can compress the data, the more we

can learn about its underlying patterns. The best model has the

4
Since DBSCAN is manually tuned, we do not use OPTICS to search parameters for

DBSCAN.

smallest MDL length:

L = log
∗(C) + LS + LΘ + LO + Lϵ

This description of model consists of the following terms:

• The number of clusters requires log
∗(C) bits. 5.

• The assignment S of all non-outlier bins inH requires

LS = |C | · log (Y) bits.
• The �tting parameters of each DTM Gaussian need (F +
(1+F )F

2
) free parameters and one �tted values Ñ .So its en-

coding requires l0 · (0.5F
2 + 1.5F + 1) bits, where l0 is the

�oating point cost, We used 4 × 8 bits in our setting. So, the

total parameter code-length is LΘ = |C | ·l0 · (0.5F
2+1.5F +1)

• The outliers O require LOOO bits to encode their indices.

• The model error requires Lϵ bits. For a bin bbb in group (is-

land) αi , the expected number of nodes is
˜h =

⌊
2
Ñi ·Psi (bbb)

⌋
,

then the original count can be accurately recovered as h =
˜h + ϵ , Thus we encode the total description error as Lϵ =∑
bbb (log

∗ (h − ˜h) + 1), where 1 denotes the sign bit.

As for the other methods in comparison, we calculated the MDL

length with the same principle [7, 10, 15]. And for the di�erent

feature space, we chose the degree vs pagerank and degree vs

triangle for Tagged dataset, and choose in-degree vs authority and

out-degree vs hubness for the rest.

The comparison of MDL length is reported in Fig. 6a. We can see

that EagleMine achieves the shortest description length, indicating

a concise and good summarization. On average, EagleMine reduces

the MDL code length more than 81.6%, 79.0%, 65.5%, 20.2% com-

pared with STING, DBSCAN, X-means and G-means respectively.

We also computed the MDL for Watershed clustering method on all

dataset, it is even much larger than DBSCAN, so we do not show

them in Fig. 6 for a better chart view. EagleMine also outperforms

EagleMine (DM) over 4.6%, bene�ting from a proper vocabulary

selection. Therefore, EagleMine summarizes the histogram with

recognized groups in the best description length.

5
Here, log

∗
is the universal code length for integers, de�ned as log

∗(x ) ≈ log
2
(x ) +

log
2
log

2
(x ) + · · · . where only the positive terms are included in the sum. [15]
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Table 1: Dataset statistics summary

# of nodes # of edges Content

Amazon rating [1] (2.14M, 1.23M) 5.84M Rate

Android [33] (1.32M, 61.27K) 2.64M Rate

BeerAdvocate [34] (33.37K, 65.91K) 1.57M Rate

Yelp [2] (686K, 85.54K) 2.68M Rate

Tagged [17] (2.73M, 4.65M) 150.8M Anonymized Links

Youtube [35] (3.22M, 3.22M) 9.37M Who-follow-who

Sina weibo (2.75M, 8.08M) 50.1M User-retweet-msg

Due to the complexity of geometric properties of distributions

in high-dimensional space [6, 48], we conducted EagleMine in 3-,

4- and 5-dimensional features spaces on Amazon and Yelp datasets,

and use the out-degree vs. top-k hubnesss (top-k left singular vec-

tors) as features. Here, EagleMine used only digitized multivariate

Gaussian as the vocabulary for simplicity. We can roughly draw

the conclusion that more feature dimensions will lead to larger cost

to describe for the histogram.

4.2 Q2. Qualitative evaluation (vision-based)

In this part, we illustrate the results on 2D histogram for vision-

based qualitative comparison. Due to the space limit, we try to

exhibit the comparisons with di�erent baselines and in di�erent

feature spaces in an alternative way. The baselines include X-means,

G-means, DBSCAN, STING, and Watershed. The feature spaces

include out-degree vs hubness, in-degree vs authority, and #triangle

vs degree.

Fig. 2d-2h shows the results on user-retweet-message graph in

Sina Weibo data. The plot features are user’s out-degree and hub-

ness indicating how many important messages retweeted. Without

removing some low-density bins as background, Watershed algo-

rithm easily identi�ed all the groups into one or two huge ones.

Hence we manually tuned the threshold of background to attain

a better result, which is similar to the groups in a level of our

water-level tree. The background for Watershed is shown with gray

color in Fig. 2e. As we can see, Watershed only recognized a few

very dense groups while failing to separate the two groups on the

right and leaving other micro-clusters unidenti�ed. Our EagleM-

ine recognized groups in a more intuitive way, and identify those

micro-clusters missed by DBSCAN and STING. Note that the user

deletion ratio in the missed micro-clusters 1○ and 3○ is unusually

high, they were suspended by the system operators for anti-spam.

Besides, those micro-clusters 3○ and 4○ include the users that have

high out-degree but low-hubness, i.e., users retweeting many non-

important messages (e.g., advertisements). Therefore, EagleMine

identify very useful micro-clusters automatically as human vision

does.

Moreover, Fig. 5 illustrates more examples on di�erent datasets

and feature spaces in four groups. The original histogram plots are

given at the beginning of each group following with label �gures

of di�erent methods. Outlier nodes are labeled with the blue color.
Di�erent colors represent di�erent groups by corresponding meth-

ods. From original plots, people will naturally expect that bins with

the similar color (density) and jointed locations should be in one

group. Hence we can see that G-means and X-means produce a

number of groups, over-separating the groups recognized by human

vision. Although manually tuned DBSCAN and STING can capture

Table 2: Suspicious ranking of micro-clusters in SinaWeibo.

Feature space Suspiciousness score κ(·) rankings

Out-degree vs Hubness 1○, 2○, 3○, 4○, 6○, 7○, 8○, 5○
In-degree vs Authority A○, C○, B○, D○

the majority dense region in each plot, while overlooking some

suspicious micro-clusters, e.g., micro-clusters A○ and C○ in Fig. 5c.

Thus, EagleMine illustrates its advantages of recognizing groups,

especially identifying micro-clusters, which is more consistent with

human vision.

4.3 Q3. Anomaly detection

To compare the performance for anomaly detection, we labeled

these nodes, both user and message, from the results of baselines,

and sample nodes of our suspicious clusters from EagleMine, con-

sidering that it is impossible to label all the nodes. Our labels were

based on the following rules [22]:

• user-accounts/messages which are deleted from the online

system (system operators found the spams)
6
.

• a lot of users that share unusual login-names pre�xes, and

other suspicious signals: approximately the same sign-up

time, friends and followers count.

• messages on advertisement or retweeting promotion, and

having lots of copy-and-paste text content.
In total, we labeled 5,474 suspicious users and 4,890 suspicious

messages. We compared with state-of-the-art fraud detection algo-

rithms GetScoop[25], SpokEn [38], and Fraudar [22].

EagleMine returns the micro-clusters with suspiciousness scores.

Table 2 lists the ranking orders of micro-clusters identi�ed by Ea-

gleMine for Fig. 2h and 5c respectively, according to their scores.

The anomaly detection results are reported in Fig. 6b, 6c. Using

the AUC (area under the ROC curve) to quantify the quality of the

ordered result from the algorithm, the sampled nodes from micro-

clusters are ranked in descendant order of hubness or authority.

The results show that EagleMine achieves more than 10% improve-

ment in anomalous user detection, and about 50% improvement

in anomalous message detection, outperforms the baselines. The

anomalous users detected by Fraudar and SpokEn only fall in the

micro-cluster 1○ in Fig. 2h, since their algorithms can only focus on

densest core in a graph. But EagleMine detects suspicious users by

recognizing noteworthy micro-clusters in the whole feature space.

Simply put, EagleMine detects more anomalies than the baselines,

by identifying extra micro-clusters 2○, 3○, and 4○ in the feature

space.

4.4 Q3. Pattern case study

As discussed above, the micro-clusters 3○ and 4○ in out-degree

vs hubness Fig. 2h contains those users frequently rewtweet non-

important messages. Here we study the behavior patterns of micro-

clusters 1○ and 2○ on the right side of the majority group. Note

that almost half of the users are deleted by system operators, and

many existing users share unusual name pre�xes as Fig. 2b shown.

What pattern have we found? The Fig. 6d shows the ‘Jelly�sh’

structure of the subgraph consisting of users from micro-clusters

6
The status is checked 3 year later (May 2017) with API provided by Sina Weibo.
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1○ and 2○. The head of ‘Jelly�sh’ is the densest core ( 1○), where the

users created unusual dense connections to a group of messages,

showing high hubness. The users (spammers or bots) aggressively

retweeted the similar message collection (i.e., A○ in Fig. 5c). At the

meantime, users from 2○ connected to some of messages in A○, and

‘copy-and-paste’ many advertising messages on a few topics, e.g.,

‘new game’, ‘apps in IOS7’, and ‘Xiaomi Phone’, Their structure

looks like ‘Jelly�sh’ tail. Thus the bots in 2○ shows lower hubness

than those in 1○, since of the di�erent spamming strategies, which

are overlooked by density-based detection methods.

4.5 Q4. Scalability

Fig. 2c shows the near-linear scaling of EagleMine’s running time

in the numbers graph nodes. Here we used Sina Weibo dataset,

we selected the snapshot of the graph, i.e., the reduced subgraph,

according to the timestamp of edge creation in top 3, 6, . . . , 30 days.

Slope of black dot line indicates linear growth.

5 RELATEDWORK

For the Gaussian clusters, K-means, X-means [37], G-means [19],

and BIRCH [49] (which is suitable for spherical clusters) algorithms

su�er from being sensitive to outliers. Those methods are distance

based, which prefer to cluster the points with a short distance in

feature space forming a spherical area. Density based methods, such

as DBSCAN [16] and OPTICS [4] are noise-resistant and can detect

clusters of arbitrary shape and data distribution, while the cluster-

ing performance relies on density threshold for DBSCAN, and also

for OPTICS to derive clusters from reachability-plot. RIC [7] en-

hances other clustering algorithms as a framework, using minimum

description language as goodness criterion to select �tting distribu-

tions and separate noise. STING [44] hierarchically merges grids in

lower layers to �nd clusters with a given density threshold. Cluster-

ing algorithms [39] derived from the watershed transformation [43],

treat pixel region between watersheds as one cluster, and only focus

on the �nal results and ignores the hierarchical structure of clusters.

Community detection algorithms [31], modularity-driven cluster-

ing, and cut-based methods [40] usually cannot handle large graphs

with million nodes or fail to provide intuitive and interpretable

result when applying to graph clustering.

Supported by human vision theory, including visual saliency,

color sensitive, depth perception and attention of vision system [20],

visualization techniques [8, 45] and HCI tools help to get insight

into data [3, 42]. Scagnostic [9, 42] diagnoses the anomalies from

the plots of scattered points. [47] improves the detection by statis-

tical features derived from graph-theoretic measures. Net-Ray [26]

visualizes and mines adjacency matrices and scatter plots of a large

graph, and discovers some interesting patterns.

In terms of anomaly detection in graphs, [25, 38] �nd communi-

ties and suspicious clusters in graph with spectral-subspace plots.

SpokEn [38] considers the “eigenspokes” pattern on EE-plot pro-

duced by pairs of eigenvectors of graphs, and is later generalized

for fraud detection. As more recent works, dense block detection

(DBD) has been proposed to identify anomalous patterns and sus-

picious behaviors [11, 22, 30]. A representative work, Fraudar [22],

proposed a densest subgraph-detection method that incorporates

the suspiciousness of nodes and edges during optimization.

Table 3: Comparison between algorithms.
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3
7
]
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[
1
9
]

D
B
S
C
A
N
[
1
6
]

B
I
R
C
H
[
4
9
]

S
T
I
N
G
[
4
4
]

W
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s
h
e
d
[
3
9
,
4
3
]

D
B
D
[
2
2
,
3
6
]

E
a
g
l
e
M
i
n
e

parameter free 3 3 ? 3 !

non-spherical cluster 3 3 3 ? !

anomaly detection 3 3 3 !

summarization 3 3 !

linear in #nodes 3 3 3 !

A comparison between EagleMine and the majority of the above

methods is summarized in Table 3. Our proposedmethod EagleMine

is the only one that matches all speci�cations.

6 CONCLUSIONS

We propose a tree-based approach EagleMine to mine and sum-

marize all node groups in a histogram plot of a large graph. The

EagleMine algorithm �nds optimal clusters based on water-level

tree and statistical hypothesis test, describes them with a con�g-

urable model vocabulary, and detects some suspicious. EagleMine

has desirable properties:

• Automated summarization: Our algorithm automatically

summarizes a given histogram with vocabulary of distri-

butions, inspired by human vision to �nd the graph node

groups and outliers.

• E�ectiveness:We compared EagleMine on real data with

the baselines, the result shown that our detection is consis-

tent with human vision, and also achieves better MDL in

summarization.

• Anomaly detection: EagleMine can detect explainable anom-

alies on real data and achieve higher accuracy for �nding

suspicious users and bots micro-clusters.

• Scalability: EagleMine algorithm runs near linear in the

number of graph nodes, and can handle themulti-dimensional

correlated feature space.

To obtain better vision judgment and summarization for multi-

dimensional features is still a challenge, our EagleMine-DM (with

the multivariate Gaussian distribution as vocabularies) is a good

choice in those cases for its comparable performance and better run-

ning times, and there are many theoretical well-de�ned hypothesis

test approaches to be used to determine the optimal clusters.
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Figure 6: EagleMine Alg. Performance. (a) MDL is compared on di�erent real-world datasets. EagleMine achieves the shortest

description code length, which means concise summarization, and outperforms all other baselines. (b), (c) EagleMine has the

best AUC for detecting suspicious users and messages on Sina weibo. (d) The structure of anomalies identi�ed in Sina weibo.
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