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Abstract. Given a heatmap for millions of points, what patterns exist in the
distributions of point characteristics, and how can we detect them and separate
anomalies in a way similar to human vision? In this paper, we propose a vision-
guided algorithm, EagleMine, to recognize and summarize point groups in the
feature spaces. EagleMine utilizes a water-level tree to capture group structures
according to vision-based intuition at multiple resolutions, and adopts statisti-
cal hypothesis tests to determine the optimal groups along the tree. Moreover,
EagleMine can identify anomalous micro-clusters (i.e., micro-size groups), which
exhibit very similar behavior but deviate away from the majority. Extensive ex-
periments are conducted for large graph scenario, and show that our method can
recognize intuitive node groups as human vision does, and achieves the best per-
formance in summarization compared to baselines. In terms of anomaly detection,
EagleMine also outperforms state-of-the-art graph-based methods by significantly
improving accuracy in synthetic and microblog datasets.

1 Introduction

Given real-world graphs with millions of nodes and connections, the most intuitive way
to explore the graphs is to construct a correlation plot [25] based on the features of graph
nodes. Usually a heatmap of those scatter points is used to depict their density, which is
a two-dimensional histogram [20]. In the histogram, people can visually recognize nodes
gathering into disjointed dense areas separately as groups (see Fig. 1), which help to ex-
plore patterns (like communities, co-author association behaviors) and detect anomalies
(e.g., fraudsters, attackers, fake-reviews, outlier etc.) in an interpretable way [22].

In particular, a graph can represent friendships in Facebook, ratings from users to
items in Amazon, or retweets from users to messages in Twitter, even they are time-
evolving. Numerous correlated features can be extracted from graph, like degree, trian-
gles, spectral vectors, and PageRank etc. and combination of these generate correlation
plots. It becomes, even, labor-intensive to manually monitor and recognize patterns from
heatmaps of the snapshots of temporal graphs. So, this raises the following questions:
Given a heatmap (i.e., histogram) of the scatter points in some feature space, how can
we design an algorithm to automatically recognize and monitor the point groups as
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Fig. 1: Heatmaps of correlation plots for some feature spaces of two real datasets and
the performance of EagleMine algorithm. The bottom figures focus on the Sina weibo
data. (a). Out-degree vs. Hubness feature space for weibo. (b). EagleMine summarizes the
distribution of graph nodes for (a) with truncated Gaussian distributions. The ellipses
denote the 1.5 and 3 times covariance of corresponding Gaussian. (c). # Triangle vs.
Degree feature space for Tagged. (d). depicts the recognized node groups for (c). (e).
highlights some micro-clusters in Fig.1b, including a disconnected small network, and
very suspicious ones. A username list on the right side shows the name patterns of bots
in a micro-cluster, where 182x: “best*” means 182 bots share prefix “best”. (f). The
structure of identified anomalous Jellyfish patterns. (g). shows the AUC performance for
detecting suspicious users and msgs compared with state-of-the-art competitors.

human vision does, summarize the points distribution in the feature space and identify
suspicious micro-clusters?

‘Micro-cluster’ refers to relatively small group of points (like users, items) with similar
behavior in the feature space. Here we demonstrate some possible feature spaces, namely

i out-degree vs hubness - Fig. 1a - this can spot nodes with high out-degree, but low
hubness score (i.e., fraudsters, which have many outgoing edges to non-important
nodes, probably, customers, that paid them) [24].

ii #triangle vs degree - spotting a near-clique group (too many triangles, for their
degree), as well as star-like constellations (too few triangles for such high degree) [23].

In this paper, we propose EagleMine, a novel tree-based mining approach to recognize
and summarize the point groups in the heatmap of scatter plots, and can also identify
anomalous micro-clusters. Experiments show that EagleMine outperforms baselines and
achieves better performance both in quantitative (i.e., the code length for compact model
description) and qualitative (i.e., consistent with vision-based judgment) comparisons,
detects a micro-cluster of hundreds of bots in microblog data, Sina weibo4, which presents

4 One of the largest microblog websites in China.
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Table 1: Comparison between algorithms.
Density-based clustering SpokEn GetScoop Fraudar EagleMine

Micro-cluster detection 3 3 3 !

Micro-cluster suspiciousness 3 !

Linear scalability ? 3 !

strong signs of sharing unusual login-name prefixes, e.g., ‘best*’, ‘black*’ and ‘18-year-
old*’, and exhibiting very similar behavior in the feature space (see Fig. 1e).

In summary, the proposed EagleMine has the following advantages:
– Anomaly detection: can spot and explain anomalies on real data by identifying

suspicious micro-clusters. Compared with the graph-based anomaly detection meth-
ods, EagleMine achieves higher accuracy for finding suspiciousness in Sina weibo.

– Automated summarization: automatically summarizes a histogram plot derived
from correlated graph features (see Fig. 1b), and recognizes node groups forming
disjonted dense areas as human vision does (see Fig. 3e).

– Effectiveness: detects interpretable groups, and outperforms the baselines and even
those with manually tuned parameters in qualitative experiments (see Fig. 3).

– Scalability: is scalable with nearly linear time complexity in the number of graph
nodes, and can deal with more correlated features in multi-dimensional space.
Our code is open-sourced at https://github.com/wenchieh/eaglemine, and most

of the datasets we use are publicly available online. The supplementary material [1]
provides proof, detailed information and additional experiments.

2 Related Work
Supported by human vision theory, including visual saliency, color sensitive, depth per-
ception and attention of vision system[17], visualization techniques[38,5] and HCI tools
help to get insight into data[35,2]. Scagnostic[35,6] diagnoses the anomalies from the
plots of scattered points. [39] improves the detection by statistical features derived from
graph-theoretic measures. Net-Ray[22] visualizes and mines adjacency matrices and s-
catter plots of a large graph, and discovers some interesting patterns.

For graph anomaly detection, [30,21] find communities and suspicious clusters with
spectral-subspace plots. SpokEn[30] considers the “eigenspokes” on EE-plot produced
by pairs of eigenvectors, and is later generalized for fraud detection. As more recent
works, dense block detection has been proposed to identify anomalous patterns and
suspicious behaviors[26,18]. Fraudar[18] proposed a densest subgraph-detection method
that incorporates the suspiciousness of nodes and edges during optimization.

Density based methods, like DBSCAN[13] can detect clusters of arbitrary shape
and data distribution, while the clustering performance relies on density threshold.
STING[37] hierarchically merges grids in lower layers to find clusters with a given den-
sity threshold; Clustering algorithms[31] derived from the watershed transformation[36],
treat pixel region between watersheds as one cluster, and only focus on the final re-
sults and ignores the hierarchical structure of clusters. [7] compared different clustering
algorithms and proposed a hierarchical clustering method, “HDBSCAN”, while its com-
plexity is prohibitive for very large dataset (like graphs) and the “outlierness” score is not
line with our expectations. Community detection algorithms[27], modularity-driven clus-
tering, and cut-based methods[32] usually can’t handle large graphs with million nodes
or fail to provide intuitive and interpretable result when applying to graph clustering.

https://github.com/wenchieh/eaglemine
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A comparison between EagleMine and the majority of the above methods is summa-
rized in Table 1. Our method EagleMine is the only one that matches all specifications.

3 Proposed Model

Consider a graph G with node set VVV and edge setEEE. G can be either homogeneous, such as
friendship/following relations, or bipartite as users rating restaurants. In some feature
space of graph nodes, our goal is to optimize the consistent node-group assignment
with human visual recognition, and the goodness-of-fit (GoF) of node distribution in
groups. So we map the node into a (multi-dimensional) histogram constructed based on
a feature space, which can include multiple node features. Considering the histogram
H with dimension dim(H), we use h to denote the number of nodes in a bin, and bbb to
denote a bin, when without ambiguity.

Model: To summarize the histogram H in a feature space of graph nodes, we utilize
some statistical distributions as vocabulary to describe the node groups in H. Therefore,
our vocabulary-based summarization model consists of Configurable vocabulary: sta-
tistical distributions Y for describing node groups of H in a feature space; Assignment
variables: S = {s1, · · · , sC} for the distribution assignment of C node groups; Model
parameters: Θ = {θ1, · · · , θC} for distributions in each node group, e.g. the mean and
variance for normal distribution. Outliers: unassigned bins O in H for outlier nodes.

In terms of the configurable vocabulary Y, it may include any suitable distribution,
such as Uniform, Gaussian, Laplace, and exponential distributions or others, which can
be tailored to the data and characteristics to be described.

4 Our Proposed Method

In human vision and cognitive system, connected components can be rapidly captured [11,28]
with a top-to-bottom recognition and hierarchical segmentation manner [3]. Therefore,
this motivates us to identify each node group as an inter-connected and intra-disjointed
dense area in heat map, which guides the refinement for smoothing, and to organize and
explore connected node groups by a hierarchical structure, as we will do.

Our proposed EagleMine algorithm consists of two steps:

– Build a hierarchical tree T of node groups for H in some feature space with Wa-
terLevelTree algorithm.

– Search the tree T and get summarization of H with TreeExplore algorithm.

EagleMine hierarchically detects micro-clusters in the H, then computes the optimal
summarization including the model parameters Θ, and the assignment S for each node
group, and outliers indices O in final. We elaborate each step in the following subsections.

4.1 Water-Level Tree Algorithm

In the histogram H, we imagine an area consisting of jointed positive bins (h > 0) as an
island, and the other bins as water area. Then we can flood the island areas, making
those bins with h < r to be underwater, i.e., setting those h = 0, where r is a water level.
Afterwards, the remaining positive bins form new islands in condition of water level r.

To organize all the islands in different water levels, we propose a water-level tree
structure, where each node represents an island and each edge represents the relationship:
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Algorithm 1 WaterLevelTree Algorithm

Input: Histogram H.
Output: Water-level tree T .
1: T = {positive bins in H as root}.
2: for r = 0 to log hmax by step ρ do
3: Hr : assign h ∈ H to zero if log h < r.
4: Hr = Hr◦ E. . binary opening to smooth.
5: islands Ar = {jointed bin areas in Hr}.
6: link each island in Ar to its parent in T .
7: end for
8: Contract T : iteratively remove each single-child island and link its children to its parent.
9: Prune T : heuristically remove noise nodes.

10: Expand islands in T with extra neighbors.
11: return T

where a child island at a higher water level comes from a parent island at a lower water
level. Note that increasing r from 0 corresponds to raising the water level and moving
from root to leaves.

The WaterLevelTree algorithm is shown in Alg. 1. We start from the root, and
raise water level r in logarithmic scale from 0 to log hmax with step ρ, to account for
the power-law-like distribution of h, where hmax = maxH. We use the binary opening5

operator (◦) [15] for smoothing each internally jointed island, which is able to remove
small isolated bins (treated as noise), and separate weakly-connected islands with a
specific structure element. Afterwards, we link each island at current level rcurr to its
parent at lower water level rprev of the tree. The flooding process stops until r reaches
the maximum level — log hmax. Subsequently, we propose following steps to refine the
raw tree T (the pictorial explanation for each step are given in the supplementary [1]):

Contract: The current tree T may contain many ties, meaning no new islands
separated, which are redundant. Hence we search the tree using depth-first search; once
a single-child node is found, we remove it and link its children to its parent.

Prune: The purpose of pruning is to smooth away noisy peaks on top of each island,
arising from fluctuations of h between neighbor bins. Hence we prune such child branches
(including children’s descendants) based on their total area size: the ratio of the sum of
h in child bins to the sum of h in parent bins, is no less than 95%.

Expand: We include additional surrounding bins into each island to avoid over-fitting
for learning distribution parameters and to eliminate the possible effect of uniform step
ρ for logarithmic scale. Hence we iteratively augment towards positive bins around each
island by a step of one-bin size until islands touch each other, or doubling the number of
bins as contained in original island.

Comparably in the Watershed formalization [36], the foreground of H are defined as
catchment basins for clustering purpose, and can capture the boundaries between clusters
as segmentation. We will see in experiments (sec. 5.3 and Fig. 3), the segmentation in

5 Binary opening is a basic workhorse of morphological noise removal in computer vision and
image processing. Here we use 2× · · · × 2︸ ︷︷ ︸

dim(H)

square-shape “probe”.
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Algorithm 2 TreeExplore Algorithm

Input: WaterLevelTree T
Output: summarization {S, Θ,O}.
1: Θ = ∅.
2: S = decide the distribution type sα from vocabulary for each island in T .
3: Search T with BFS to iteratively conduct following to each node: use DistributionF it to

determine the parameter; apply Hypothesis test to select optimal one; and insert result into
Θ and update S.

4: Stitch and replace promising distributions in S, then update Θ.
5: Decide outliers O deviating from the recognized groups.
6: return summarization {S, Θ,O}.

Watershed approximates the islands in one level of tree T , with a threshold parameter for
background. STING also selects clusters in the same level, and needs a density threshold;
HDBSCAN extracts hierarchies with MST that can not capture trees with any branches.
However, EagleMine has no tuning parameters, and then searches the water-level tree to
find the best combination of islands, which may come from different levels (see sec. 4.2).

4.2 Tree Explore Algorithm

With the water-level tree and describing vocabulary, we can then determine the optimal
node groups and their summarization. The main procedure is described in Alg. ??, where
we decide the distribution vocabulary sα for each tree node (island) α, search the tree
with BFS, select the optimal islands with some criteria, and refine the final results using
stitching. In addition, we believe the pictorial illustration in supplement [1] will offer
intuitive explanation for the algorithm.

We now describe our vocabulary Θ. Truncated Gaussian distribution [34] is a flexible
model for capturing clusters of different shapes, like line, circle, and ellipse, or their
truncation in 2D case. Due to the discrete unit bins in H, the discretized, truncated,
multivariate Gaussian distribution (DTM Gaussian for short) with the mean µµµ and
co-variance ΣΣΣ as parameter is used as one of the vocabulary. Observing the multi-
mode distribution of islands (skewed triangle-like island in Fig. 1a) which exist in many
different histogram plots and contains the majority of graph nodes, we add Mixture of
DTM Gaussians as another vocabulary term to capture these complex structures.

In general, to decide the assignment S of vocabulary to each island, we can use
distribution-free hypothesis test, like Pearson’s χ2 test, or other distribution specified
approaches. Here, we heuristically assign Mixture of DTM Gaussians to the island con-
taining the largest number of graph nodes at each tree level, and DTM Gaussian to other
islands for simplicity. After vocabulary assignment, we use the maximum likelihood es-
timation to learn the parameters θα ∈ Θ for a island α, which θα = {µµµα,ΣΣΣα, Ñα} and
Ñα =

∑
(i1,··· ,iF )∈α log hi1,··· ,iF . Let DistributionFit(α, sα) denote the step of learning

the parameter θα.
Afterwards, we search along the tree T with BFS to select the optimal combination

of clusters. In principle, metrics like AIC and BIC in machine learning and Pearson’s
χ2 test and K-S test in statistics, can be adopted to determine whether to explore the
children of T . Here we utilize statistical hypothesis test to select models for its better
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adaptation and performance in experiments, which measure the statistical significance
of the null hypothesis [10,16]. The null hypothesis for searching the children of island α
in T is:

HHH0: the bins of island α come from distribution sα.

If HHH0 is not rejected, we stop searching the island’s children. Otherwise, we further
explore the children of α.

Specifically, We apply this hypothesis test to an island based on its binary image,
which focuses on whether the island’s shape looks like a truncated Gaussian or mixture.
Simply, we project the bin data to some dimensions and apply the test according to
projection pursuit [19] and G-means [16]. We implement the Quadratic class ‘upper
tail’ Anderson-Darling Statistic test 6 [9,33] (with 1% significance level) due to the
truncation. And we accept the null hypothesis HHH0 only when the test is true for all
dimension projections. If one of them is rejected, HHH0 will be rejected. Finally, we get the
node groups to summarize the histogram until the BFS stops.

Stitch: some islands from different parents are physically close to each other. In
such case, those islands can probably be summarized by the same distribution. So we
use stitch process in step 4 to merge them by hypothesis test as well. The stitch process
stops until no changes occur. When there are multiple pairs of islands to be merged at
the same time, we choose the pair with the least average log-likelihood reduction after
stitching:

(αi∗ , αj∗) = arg min
i,j

Li + Lj − Lij
#points of αi and αj

where αi and αj are the pairs of islands to be merged, L(·) is log-likelihood of a island,
and Lij is the log-likelihood of the merged island.

Outliers and suspiciousness score: The outliers comprise of the bins far away
from any distribution of the identified node groups (i.e. with probability < 10−4). In-
tuitively, the majority island containing the most nodes is normal, so we define the
weighted KL-divergence of an island from the majority island as its suspiciousness score.

Definition 1 (Suspiciousness). Given the parameter θm for the majority island, the
suspiciousness of the island αi described by distribution with parameter θi is:

κ(θi) = log d̄i ·
∑
bbb∈αi

Ni ·KL (P (bbb | θi) ||P (bbb | θm) )

where P (bbb | θ) is the probability in the bin bbb for the distribution with θ as parameter,
Ni is the number of nodes in the island i, and we use the logarithm of d̄i, average degree
of all graph nodes in the island i, as the weight based on the domain knowledge that if
other features are the same, higher-degree nodes are more suspicious.

Time complexity: Given features associated with nodes VVV , generating the his-
togram takes O(|VVV |) time. Let nnz(H) be the number of non-empty bins in H and C be
the number of clusters. Assume the the number of iterations for learning parameters in
DistributionFit(·) is T , then we have (proofs are in our supplementary material [1]):

Theorem 1. The time complexity of EagleMine is O(
log hmax

ρ
· nnz(H)+C·T · nnz(H)).

6 This measures the goodness-of-fit of the left-truncated Gaussian distribution.
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Table 2: Dataset statistics summary and synthetic settings.
# of nodes # of edges Content Injected Block

BeerAdvocate [29] (33.37K, 65.91K) 1.57M rate 1k × 500, 2k × 1k
Flickr (1.4M, 466K) 1.89M user to group 2k × 2k, 4k × 2k
Amazon (2.14M, 1.23M) 5.84M rate -
Yelp (686K, 85.54K) 2.68M rate -
Tagged (2.73M, 4.65M) 150.8M anonymized Links -
Youtube (3.22M, 3.22M) 9.37M who-follow-who -
Sina weibo (2.75M, 8.08M) 50.1M user-retweet-msg -

5 Experiments

We design the experiments to answer the following questions: [Q1] Anomaly detec-
tion: How does EagleMine’s performance on anomaly detection compare with the state-
of-art methods? How much improvement does the visual-inspired information bring?
[Q2] Summarization: Does EagleMine give significant improvement in concisely sum-
marizing the graph? Does it accurately identify micro-clusters that agree with human
vision? [Q3] Scalability: Is EagleMine scalable with regard to the data size?

The dataset7 information used in our experiments is illustrated in Table 2. The
Tagged[14] dataset was collected from Tagged.com social network website. It contains
7 anonymized types of links between users, and here we only choose the links of type-
6, which is a homogeneous graph. The microblog Sina Weibo dataset was crawled in
November 2013 from weibo.com, consisting of user-retweeting-message (bipartite) graph.

5.1 Q1. Anomaly detection

To demonstrate EagleMine can effectively detect anomalous, we conduct experiments on
both synthetic and real data, and compare the performance with state-of-the-art fraud
detection algorithms GetScoop[21], SpokEn [30], and Fraudar [18].

In the synthetic case, we inject different size fraud (as a block) with and without
random camouflage into real datasets as Table 2 shows, where the ratio of camouflage
is set to 50%, i.e. randomly selecting different objects as the same size as the targets.
For BeerAdovate, the density of injected fraud is 0.05. For Flickr, the density of injected
fraud are 0.05, 0.1, 0.2. We use F score for nodes on both sides of injected block to test
the detection accuracy, and report the averaged result over above trials for each dataset
in Fig. 2a. GetScoop and SpokEn are omitted since they fail to catch any injected
object. It is obvious that EagleMine consistently outperforms Fraudar and achieves less
variance for the injection cases with and without camouflages.

To verify that EagleMine accurately detects anomalies in Sina weibo data, we la-
beled these nodes, both user and message, from the results of baselines, and sampled
nodes of our suspicious clusters from EagleMine, since that it is impossible to label

7 The public datasets are available at: Amazon: http://konect.uni-koblenz.de/networks/
amazon-ratings, Yelp: https://www.yelp.com/dataset_challenge, Flickr: https:

//www.aminer.cn/data-sna#Flickr-large, Youtube: http://networkrepository.com/

soc-youtube.php, Tagged: https://linqs-data.soe.ucsc.edu/public/social_spammer/.

http://konect.uni-koblenz.de/networks/amazon-ratings
http://konect.uni-koblenz.de/networks/amazon-ratings
https://www.yelp.com/dataset_challenge
https://www.aminer.cn/data-sna#Flickr-large
https://www.aminer.cn/data-sna#Flickr-large
http://networkrepository.com/soc-youtube.php
http://networkrepository.com/soc-youtube.php
https://linqs-data.soe.ucsc.edu/public/social_spammer/
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Fig. 2: EagleMine performance for anomaly detection, summarization, and s-
calability. (a) EagleMine achieves best accuracy for detecting injected fraud for BeerAd-
vocate (‘Beer’ as the abbr.) and Flickr data. *Note that GetScoop and spokEn are omit-
ted for failing to catch any injected object. (b) MDL is compared on different datasets.
EagleMine achieves the shortest description code length, which means concise summa-
rization, and outperforms all other baselines (†Watershed clustering method is omitted
due to its MDL results is even much larger than the worst case). (c) blue curve shows
the running time of EagleMine v.s. # of node in graph in log-log scale.

all the nodes. Our labels were based on the following rules (like [18]): 1) deleted user-
accounts/messages by the online system 8 2) a lot of users that share unusual login-names
prefixes, and other suspicious signals: approximately the same sign-up time, friends and
followers count. 3) messages about advertisement or retweeting promotion, and having
lots of copy-and-paste text content. In total, we labeled 5,474 suspicious users and 4,890
suspicious messages.

The anomaly detection results are reported in Fig. 1g. Using AUC to quantify the
quality of the ordered result from the algorithm, the sampled nodes from micro-clusters
are ranked in descendant order of hubness or authority. The results show that EagleM-
ine achieves more than 10% and about 50% improvement for anomalous user and msg
detection resp., outperforming the baselines. The anomalous users detected by Fraudar
and SpokEn only fall in the micro-cluster 1© in Fig. 3e, since their algorithms can only
focus on densest core in a graph. But EagleMine detects suspicious users by recognizing
noteworthy micro-clusters in the whole feature space. Simply put, EagleMine detects
more anomalies than the baselines, identifying more extra micro-clusters 2©, 3©, and 4©.

5.2 Case study and found patterns

As discussed above, the micro-clusters 3© and 4© in out-degree vs hubness Fig. 3e contains
those users frequently rewtweet non-important messages. Here we study the behavior
patterns of micro-clusters 1© and 2© on the right side of the majority group. Note that
almost half of the users are deleted by system operators, and many existing users share
unusual name prefixes as Fig. 1e shown.

What patterns have we found? The Fig. 1f shows the ‘Jellyfish’ structure of the
subgraph consisting of users from micro-clusters 1© and 2©. The head of ‘Jellyfish’ is
the densest core ( 1©), where the users created unusual dense connections to a group

8 The status is checked three years later (May 2017) with API provided by Sina weibo service.
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of messages, showing high hubness. The users (spammers or bots) aggressively ‘copy-
and-paste’ many advertising messages a few times, which includes ‘new game’, ‘apps in
IOS7’, and ‘Xiaomi Phone’, Their structure looks like ‘Jellyfish’ tail. Thus the bots in 2©
shows lower hubness than those in 1©, due to the different spamming strategies, which
are overlooked by density-based detection methods.

5.3 Q2. Summarization Evaluation on Real Data

We select X-means, G-means, DBSCAN and STING as the comparisons, the setting
details are described in supplements. We also include EagleMine (DM) by using mul-
tivariate Gaussian description. We chose the feature spaces as degree vs pagerank and
degree vs triangle for Tagged dataset, and choose in-degree vs authority and out-degree
vs hubness for the rest.

We use Minimum Description Length (MDL) to measure the summarization as [4] do,
by envisioning the problem of clustering as a compression problem. In short, it follows
the assumption that the more we can compress the data, the more we can learn about its
underlying patterns. The best model has the smallest MDL length. The MDL lengths for
the baselines are calculated as [12,8,4]. With the same principle, the MDL of EagleMine
is: L = log∗(C) + LS + LΘ + LO + Lε; details are listed in the supplementary [1].

The comparison results of MDL are reported in Fig. 2b. We can see that EagleMine
achieves the shortest description length, indicating a concise and good summarization.
Compared with the competitors, EagleMine reduces the MDL code length more 26.2%
at least and even 81.1% than G-means and STING resp. on average, it also outperforms
EagleMine (DM) over 6.4%, benefiting from a proper vocabulary selection. Therefore,
EagleMine summarizes histogram with recognized groups in the best description length.

Besides the quantitative evaluation for summarization, we illustrate the results on 2D
histogram for vision-based qualitative comparison. Due the the space limit, here we only
exhibit the results for Sina Weibo dataset. As Fig. 3 shows, the plot features are user’s
out-degree and hubness indicating how many important messages retweeted. Without
removing some low-density bins as background, Watershed algorithm easily identified
all the groups into one or two huge ones. Hence we manually tuned the threshold of
background to attain a better result, which is similar to the groups in a level of our
water-level tree. The background for Watershed is shown with gray color in Fig. 3b. As
we can see, Watershed only recognized a few very dense groups while failing to separate
the two groups on the right and leaving other micro-clusters unidentified. Our EagleMine
recognized groups in a more intuitive way, and identify those micro-clusters missed by
DBSCAN and STING. Note that the user deletion ratio in the missed micro-clusters 1©
and 3© is unusually high, and they were suspended by the system operators for anti-
spam. Besides, those micro-clusters 3© and 4© include the users have high out-degree but
low-hubness, i.e., users retweeting many non-important messages (e.g., advertisements).
Hence, EagleMine identify very useful micro-clusters automatically as human vision does.

5.4 Q3. Scalability

Fig. 2c shows the near-linear scaling of EagleMine’s running time in the numbers graph
nodes. Here we used Sina weibo dataset, we selected the snapshot of the graph, i.e., the
reduced subgraph, according to the timestamp of edge creation in first 3, 6, . . . , 30 days.
Slope of black dot line indicates linear growth.
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(a) G-means

manually tuned THOLD.

treated as 

background

(b) Watershed

micro-clusters

missed

manually tuned para.

(c) DBSCAN

manually tuned para.

micro-clusters

missed

(d) STING (e) EagleMine

Fig. 3: EagleMine visually recognizes better node groups than clustering algorithms for
the feature space in Fig.1a. Watershed (with a threshold for image background), DB-
SCAN, and STING are mannaully tuned to have a relatively better results. The blue
scattering points in (c)-(e) denote individual outliers. Even though DBSCAN and STING
are extensively manually tunned, some micro-clusters of low density are missed.

6 Conclusions

We propose a tree-based approach EagleMine to mine and summarize all point groups
in a heatmap of scatter plots. EagleMine finds optimal clusters based on a water-level
tree and statistical hypothesis tests, and describes them with a configurable model vo-
cabulary. EagleMine can automatically and effectively summarize the histogram and
node groups, detects explainable anomalies on synthetic and real data, and can scale up
linearly. In general, the algorithm is applicable to any two/multi-dimensional heatmap.
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