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Abstract. In this supplementary document, we provide additional examples,
proofs, dataset description, and experimental results, all of which supplement
the main paper.

1 Tensor Example.

Example 1 (Review History). Assume a relation R(user, item, date, #count), its three
dimension attributes are { user, item, date }, the other one X = #count is the measure
attribute. Each tuple t = (u, i, d, c) in R indicates that user u visited item i on date d
in total c times.

As a toy example of relation R in the Fig. 1(a), R1 = { Alex, Chris, Dora }, R2 =
{ A, B, C }, R3 = { Sep-6, Sep-7, Sep-8 }. The colored regions in Fig. 1(b) indicates
a subtensor B 4 R, which is composed of B1 = { Alex, Chris }, B2= { B, C }, B3 =
{ Sep-6, Sep-8 }. We use R and an indicator vectors collection XB to facilitate many
computations w.r.t B, and XB = {x1,x2,x3} as Fig. 1(c) shown; taking the indicator
vector x1 as an example, x1 = [1, 1, 0] because B1 only contains “Alex” and “Chris” of
R1 but no “Dora”.
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Fig. 1. Pictorial description of Example 1. (a) Relation R(user, item, date, #count). (b)
3-way tensor representation of R, the colored region indicates a subtensor B formed by some
colored tuples in relation R. (c) The indicator vectors collection representation for subtensor
B can be denoted as XB = {x1,x2,x3}, and VB =

∏3
i=1 ||xi||1 = 2 ∗ 2 ∗ 2 = 8.
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Algorithm 1 OneWayOpt for one indicator vector updating

Input: (1) the indicator vector xn to be updated for Xk (2) the initial update step size: α
(3) the ratio of decreasing the step size: β ∈ (0, 1) (default 1/10)
(4) the linear search parameter: σ ∈ (0, 1)

Output: the new updated indicator vector x̃n.

1: compute the gradient ∇xnf (as the statement in main paper)
2: compute the objective function f(·,Xk, ·) with xn (as the Eq. (6) shows)
3: initial α← 1 B step size for updating
4: while not satisfy the Armijo’s condition do
5: x̃n = P (xn − α∇xnf) B the new xn

6: compute the objective function f(·,Xk
xn→x̃n

, ·) with x̃n

7: adjust the step size α with β based on the condition in Eq. (1).
8: if the condition in Eq. (1) is not satisfied then
9: α← β · α B decrease α

10: else
11: α← α/β B increase α

12: return the final x̃n.

2 Indicator Vector Updating.

Here we introduce the OneWayOpt, which is described in Algorithm 1, is used to
update any indicator vector xn for Xk (k ∈ bKe).

The condition for searching a good step size α with an Armijo’s rule line search is

f(·,Xk
xn→x̃n

, ·)− f(·,Xk, ·) ≤ σ(∇xnf)T (x̃n − xn). (1)

Searching step size α is the most time consuming process, we use a more flexible
line search [3] method to decrease the number of checks for the stop criterion Eq. (1).
Specifically, let α denote the step size for updating xn, and we assume that it is similar
to the step size for updating x̃n. Then, to update x̃n, we use α as the initial guess and
either increase or decrease it with a scale factor β (0 < β < 1) until find the best step
size satisfying Eq. (1). The core steps for efficiently searching α correspond to the Line
8-11, and β = 1/10 is chosen in our paper.

3 Proofs of Convergence and Complexity

3.1 Proofs of the Convergence (Lemma 1).

Proof (Convergence). Considering the subtensor detection as Eq. (3) defined (in main
paper), the alternative updating steps in CatchCore come down to the block nonlinear
Gauss-Seidel method.

Based on the convergence conclusion [2] for quasi-convex objective function, the
indicator vectors in each dimension are bounded with a closed convex sets, the Armijo-
type line search (LS) adopted in Algorithm 1 generates a sequence of points for any
dimension, and there exits at least one limit point x̃, then we have (∇xf)T (x̃−x) ≥ 0,
i.e., x̃ is a critical (stationary) point. This convergence result is still satisfied without
any convexity assumption on the objective function.
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Table 1. Accuracy of hierarchical subtensors detection for Synthetic dataset.

K Injected Densities
H1 H2 H3 H4

CC D/M CS CPD CC D/M CS CPD CC D/M CS CPD CC D/M CS CPD

2
0.01 + 0.001 1 1 0.14 0.14 1 0.183 0.89 0.89

–
–

0.1 + 0.01 1 1 0.25 0.25 1 1 0.89 0.89
0.25 + 0.1 1 1 0.35 0.35 1 0.257 1 1

3
0.1 + 0.01 + 0.001 1 1 0.17 0.17 1 1 0.20 0.20 1 0.321 0.74 0.87

0.25 + 0.1 + 0.01 1 0 0.98 0.98 1 1 0.20 0.20 1 1 0.85 0.98

4
0.25 + 0.1+
0.01 + 0.001

1 0 0.96 0.96 1 1 0.51 0.51 1 1 0.19 0.19 1 0.359 0.79 0.95

* The algorithm abbreviations mean that CC: CatchCore, D: D-Cube, M: M-Zoom, CS: CrossSpot.
* The shape corresponding to different injected density is: 0.001: 200 × 250 × 100, 0.01: 200 × 100 × 60,

0.1:80 × 80 × 30, 0.25: 50 × 60 × 10.

To detect hierarchical subtensors, CatchCore updates indicator vectors hierarchy-
by-hierarchy, the convergence property is maintained since the subproblem for detecting
subtensor in one hierarchy is same as the Eq. (3). Therefore, CatchCore algorithm
converges to a critical point for each limit point. �

3.2 Proofs of Time Complexity (Theorem 1).

Proof (Worst-case Time Complexity). Regarding the computational complexity for
MXk and ∇xn

f in OneWayOpt Algorithm 1, they rely on the full-mode produc-
t ×̄ or ×̄(−n) , which takes at most O(nnz(R)) by conducting elementwise n-mode
product for tensor and all vectors. Computing the norm of indicator vectors takes
O(

∑N
n=1 |Rn|), which is included in the objective function f , vector gradient of f , and

stop-criteria. Thus, for tals searching iterations, the time complexity of OneWayOpt
is O(tals · (nnz(R) + c ·DR)).

The alternative updating for all variables in CatchCore Algorithm runs tmax times
at most, So there will be K ·N · tmax iterations to call OneWayOpt in total. To select
the significant subtensors, all indicator vectors in each of the K hierarchies will be check
at most one time, for a total of O(K ·

∑N
n=1 |Rn|) times. Hence, the worst-case time

complexity of CatchCore algorithm is O(K ·N · tmax · tals · (nnz(R) + c ·DR)). �

3.3 Proofs of Space Complexity (Theorem 2).

Proof (Memory Requirements). CatchCore stores the tensor R in sparse format, the
indicator vectors and gradient vectors when compute MXk and ∇xk

n
f for indicator

vectors collection Xk. So, the memory requirements is O(nnz(R) + 2K ·DR). �

4 Description of AirForce Dataset.

The attributes in AirForce [1] dataset are as follows:
– protocol : type of protocol (udp, tcp, icmp).
– service: type of network service on destination (e.g. http, telnet, etc.).
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Fig. 2. The subtensors detected by CatchCore achieve higher densities. In each plot, points
represent the density of k-th of top 4 blocks found by the methods. And the size of some blocks
are labeled in text. CatchCore catches suspicious patterns for the datasets.

– src types: amount of data bytes from source to destination.
– dst types: amount of data bytes from destination to source.
– flag : normal or error status of each connection.
– count : number of connections to the same host as the current connection in the past

two seconds.
– srv count : number of connections to the same service as the current connection in

the past two seconds.
– #connections: number of connections with the corresponding dimension attribute

values.

5 Additional Experiments.

5.1 Injected HDS-tensors for the synthetic dataset.

We inject K subtensors with different size and density into synthetic tensor R in
a hierarchical manner. Table 1 lists the result, where H1 is the densest or the first
subtensor detected by methods, and the density (order) decreases (increases) from H1
to H4, and the information of injected blocks is listed at the bottom. CatchCore
can successfully detect all injected subtensors in various hierarchies, size, and density
diversity. D-Cube and M-Zoom have the same performance, both of which fail to
accurately detect the highest or lowest density blocks; CrossSpot and CPD also can
not perfectly detect injected hierarchical blocks, especially for the densest block in
K = 2 and middle-dense blocks for K = 3 and 4.

5.2 Patterns in real-world dataset.

The Fig. 2 shows the top 4 dense subtensors detected by different methods for Stack-
Overflow and Android datasets. CatchCore detects higher-density dense blocks, which
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Fig. 3. CatchCore is scalable. (a) (b) CatchCore scales linearly with the number of tuples
and the number of attributes of R. (c) CatchCore scales sub-linearly with the cardinalities
of attributes of R.

may contain more anomalous patterns than others. For the StackOverflow dataset, the
user in the 1-st dense block marked 257 posts as favorites within an hour, which may be
a bot activity; and the 2-nd block also shows suspicious dense pattern. For the Android
dataset, the density of the 1-st dense subtensor detected by CatchCore is more 6
times than the results of other competitors.

5.3 Algorithm Scalability.

Fig. 3 shows that CatchCore scales (sub-) linearly with all aspects of the tensor,
i.e, the number of tuples, the number of dimension attributes, and the cardinality of
dimension attributes. Specifically, we measured the running time of CatchCore for
a synthetic tensor R by changing one factor at a time. For the scalability of #tuples,
R has three attributes each of whose cardinality is 10K, with different density varying
from 5 · 10−8 to 10−5; for the #attributes, we changed the dimension from 3 to 6 for
R with 1M tuples and same cardinality; for the cardinality, the DR of a 3-way tensor
R with 1M tuples vary from 5K to 106. The result is consistent with the theoretical
analysis in Theorem 1.
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