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Abstract. Dense subtensor detection gains remarkable success in spotting anoma-
ly and fraudulent behaviors for the multi-aspect data (i.e., tensors), like in so-
cial media and event streams. Existing methods detect the densest subtensors
flatly and separately, with an underlying assumption that those subtensors are
exclusive. However, many real-world tensors usually present hierarchical proper-
ties, e.g., the core-periphery structure or dynamic communities in networks. In
this paper, we propose CatchCore, a novel framework to effectively find the
hierarchical dense subtensors. We first design a unified metric for dense subten-
sor detection, which can be optimized with gradient-based methods. With the
proposed metric, CatchCore detects hierarchical dense subtensors through the
hierarchy-wise alternative optimization. Finally, we utilize the minimum descrip-
tion length principle to measure the quality of detection result and select the
optimal hierarchical dense subtensors. Extensive experiments on synthetic and
real-world datasets demonstrate that CatchCore outperforms the top competi-
tors in accuracy for detecting dense subtensors and anomaly patterns. Addition-
ally, CatchCore successfully identified a hierarchical researcher co-authorship
group with intense interactions in DBLP dataset. Meanwhile, CatchCore also
scales linearly with all aspects of tensors.
Code related to this paper is available at: http://github.com/wenchieh/catchcore.

1 Introduction

Dense subgraph and subtensor detection have been successfully used in a variety of
application domains, like detecting the anomaly or fraudulent patterns (e.g. lockstep
behavior, boost ratings) in social media or review sites [11, 13], identifying malicious
attacks in network traffic logs or stream data [22, 24], and spotting changing gene-
communities in biological networks [27], etc.

Several algorithms detect the densest subtensors or blocks in a flat manner [13,
22, 23, 24], i.e., remove-and-redetect one-by-one, with an underlying assumption that
those subtensors are exclusive and separate. However, many real-world tensors usually
present hierarchical properties, like the core-peripheral structure in networks and dy-
namic communities in social media. So it will be difficult to identify subtle structures
(like multi-layer core) within the dense block and the relations (e.g., overlapping or
inclusion) among different blocks. Meanwhile, other methods for community detection
[5, 7, 28] and dense subgraph detection [11, 21, 30] only concentrate on the plain graph.

One challenging problem is how to efficiently detect the hierarchical dense subten-
sors in the multi-aspect data, and Fig. 1(a) illustrates an example for the TCP dumps
scenario. The network intrusion attacks dynamically changed in interacting-intensity
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(a) Pictorial depiction of hierarchical dense subtensors.
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Fig. 1. Examples and CatchCore performance overview. (a) Example and workflow of
hierarchical dense subtensors detection. (b) shows the detected dense co-authorship researcher
group (a multi-layer core) of 20 users in DBLP. The densest block (red) lasts 3 years (2011-
2013) containing 8 authors as the list shows, the outer hierarchies (with different colors) include
other researchers and exist in various time ranges (text labeled). (c) CatchCore outperforms
competitors for detecting injected blocks in synthetic data, it achieves lower detection bound
than others.(d) CatchCore detects dense subtensors with higher density compared with base-
lines for the top four densest blocks in DBLP. These blocks correspond to a hierarchical group
as Fig. 1(b) shows. (e) CatchCore is linearly scalable w.r.t the number of tuples in tensor.

at different stages along the time and among various hosts (i.e., from source-IP to
destination-IP), resulting in a multi-layer and high-density core. So, hierarchical
dense subtensor detection helps to understand the process and spot such anomalies.

Therefore, we propose CatchCore, a novel framework to detect hierarchical dense
cores in multi-aspect data (i.e. tensors). We first design a unified metric, one can define
distinct density measures for dense subtensor detection. The objective based on the
metric can be optimized with gradient methods. By such form of metric, CatchCore
can identify hierarchical dense cores through a hierarchy-wise alternative optimization
with convergence guarantee. In summary, our main contributions are as follows:

– Unified metric and algorithm: We design a unified metric can be optimized with
the gradient methods to detect dense blocks, propose CatchCore for hierarchical
dense core detection with the theoretical guarantee and MDL based measurement.

– Accuracy: CatchCore outperforms state-of-the-art methods in accurately detect-
ing dense blocks and hierarchical dense subtensors in both synthetic and real-world
datasets (Fig. 1(c), 1(d)).
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– Effectiveness: CatchCore successfully spotted anomaly patterns, including sus-
picious friend-connections, periodical network attacks, etc., and found a researcher
co-authorship group with heavy interactions in a hierarchical fashion (Fig. 1(b)).

– Scalability: CatchCore is scalable, with linear time (Fig. 1(e)) and space com-
plexity with all aspects of tensors (Theorem 7, 8).
Reproducibility: Our open-sourced code and the data we used is available at http:

//github.com/wenchieh/catchcore, where supplementary document is also contained.

2 Notions and Concepts

Throughout the paper, vectors are denoted by boldface lowercases (e.g. x), the
scalars are denoted by the lowercase letters (e.g. c), and bxe ≡ {1, . . . , x} for brevity.

Let R(A1, . . . , AN , C) be a relation consisting of N dimension attributes denoted
by {A1, . . . , AN}, and the non-negative measure attribute C ∈ N≥0, (see the running
example in supplement).We use Rn to denote the set of distinct values of An, whose
element is ak ∈ Rn. For each entry (tuple) t ∈ R and for each n ∈ bNe, we use t[An] and
t[C] to denote the values of An and C respectively in t, i.e., t[An] = an and t[C] = c.
Thus, the relation R is actually represented as an N -way tensor of size |R1|×· · ·×|RN |,
and the value of each entry in the tensor is t[C], where it will be 0 if the corresponding
tuple t does not exit. Let R(n, an) = {t ∈ R; t[An] = an} denote all the entries of R

where its attribute An is fixed to be an. We define the mass of R as MB =
∑
t∈R t[C],

i.e. the sum of values of measure C in R; the volume of R is defined as VR =
∏N
n=1 |Rn|

and the cardinality sum of all dimensions of R is denoted as DR =
∑N
n=1 |Rn|.

For a subtensor B, which is composed of the subset of attributes in R, is defined
as B = {t ∈ R; t[An] ∈ Bn,∀n ∈ bNe}, i.e. the set of tuples where each attribute
An has a value in Bn. With the tensor term, the relation B forms a “block” of size
|B1| × · · · × |BN | in R. We use B 4 R to describe that B is the subtensor of R.

Mathematically, for any n ∈ bNe, we can use a indicator vector x ∈ {0, 1}|Rn| to denote
whether any an ∈ Rn belongs to Bn, and x[an] = 1 iff B(n, an) ⊆ R(n, an). Thus the
inclusion relationship between B and R can be represented with an indicator vectors
collection XB = {xn ∈ {0, 1}|Rn|;∀n ∈ bNe}. Specially, X0 = {0|Rn|;∀n ∈ bNe}
corresponds to NULL tensor (∅), and X1 = {1|Rn|;∀n ∈ bNe} corresponds to R.

Given an indicator vector x ∈ {0, 1}|Rn| for tensor R, the subtensor, whose n-th
dimension consists of {a;x[a] = 1, a ∈ Rn}, can be denoted as R×n x, where “×n” is
the n-mode product for a tensor and a vector1. In addition, the subtensor B of R can be
computed with corresponding indicator vectors collection XB as: B = R∗(x1◦· · ·◦xN ),
where “∗” is the Hadamard product of tensors and “◦” is the Outer product of vectors.

3 Framework and Formulation

In this section, we propose a unified metric, which can be optimized with the gradient
methods, to detect dense blocks, then we give the formal definition of the hierarchical
dense subtensors detection problem.

1 Entrywise, the n-mode product between the tensor R and vector x can be denoted as:
(R×n x)i1...in−1in+1...iN =

∑|Rn|
in=1 t(i1, · · · , iN , c)xin .
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3.1 Densest Subtensor Detection Framework.

Let R is an N -way tensor, and B is the subtensor of R defined by the indicator
vectors collection XB. Then the mass MB can be represented as,

MB = R ×̄ XB = R×1 x1 · · · ×N xN . (1)

where the full-mode product ×̄ applies the n-mode tensor-vector product to indicator
vectors along the corresponding dimension2. Inspired by the density function for dense
subgraph [26], we propose the following unified metric,

Definition 1 (Entry-Plenum). Assume X is an indicator vectors collection, and φ >
0 is a constant. Given any two strictly increasing functions g and h, the entry-plenum
is defined as:

fφ(X) =

{
0 X = X0,

g(MX)− φ · h(SX) otherwise.
(2)

where the MX is the mass and SX is the size of subtensor defined by X in R, and SX

can be VX, DX or other forms.
Most popular existing subtensor density measures [13, 22, 23] can be subsumed into

the above definition as,

– Let g(x) = log x, h(x) = log x
N , φ = 1 and SX = DX, fφ(B) is equal to the arith-

metic average mass ρari(B) = MB/(DB/N).
– Let g(x) = h(x) = log x, SX = VX, if φ = 1, then fφ(B) corresponds to volume den-

sity ρvol(B) = MB/VB; and if set φ = 1
N , the fφ(B) comes down to the geometric

average mass ρgeo(B) = MB/V
1/N
B .

In principle, for the entry-plenum definition, the first term g(MX) favors subtensors
with the large mass, whereas the second term −φ · h(SX) acts as regularization to
penalize large-size block. Thus, detecting the densest subtensor can be rewritten as the
following problem under the entry-plenum metric.

Problem 2 (Densest (g, h, φ)-entry-plenum Subtensor). Given an N -way tensor R, a
constant φ > 0, and a pair of increasing functions g and h, find an indicator vectors
collection X∗ such that fφ(X∗) ≥ fφ(X) for all feasible X = {xn ∈ {0, 1}|Rn| : ∀n ∈
bNe}. The subtensor derived from X∗ is referred to be as the Densest (g, h, φ)-entry-
plenum Subtensor of the tensor R.

In general, finding the densest block in terms of some measure is NP-hard [2, 22],
infeasible for the large dataset. Existing methods [4, 11, 22, 23] resort to greedy approx-
imation algorithm, which iteratively selects the local optimal subtensor from candidates
based on some density measure defined in the ratio form, for scalability. Instead, our
framework formulates the densest subtensor detection problem in an optimization per-
spective as follows, it utilizes the indicator vectors collection X, which can be treated
as a block-variable, to make the above problem can be solved through block-nonlinear
Gauss-Seidel (GS) method [10] with convergence guarantee by introducing relaxation.
MX and SX are derivable to each indicator vector under this condition, and we can
use gradient-based optimization strategy for updating as long as the g and h are differ-
entiable functions (usually satisfied). Moreover, this process is linearly scalable as our
proposed CatchCore algorithm does in Section 4.5.

2 We use ×̄(−n) to denote conducting full-mode product except the n-th mode.
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3.2 Hierarchical Dense Subtensor Detection.

In practice, different dense blocks in R may be overlapping or even inclusive rather
than being separate or flat as many dense-block detection methods assumed [13, 22, 23],
whereas they can be described by the hierarchical dense subtensors. We present the
following example and definition to manifest the hierarchical structure in multi-aspect
data, Fig. 1(a) gives a pictorial illustration for the Example 3.

Example 3 (Network Intrusion). The DARPA dataset contains 60% records labeled as
anomalous (attacks), which mostly occurred in infrequent bursts, and dominant by 9 types
of attacks, like neptune, smurf, and satan etc.. These different attacks had various intrusion
intensity and burst activities, leading to discriminative dense patterns at various time ranges.

Given an N -way tensor R, we want to find the dense subtensors, comprising a set of
different entries, in several hierarchies. We use ρ(B) to denote the density of subtensor
B, and Bk as the kth-hierarchy dense subtensor in R. In order to find some meaningful
patterns and to avoid getting identical subtensors cross distinct hierarchies, we have
following definition. Given the tensor B0 ← R and a constant K ∈ N+,

Definition 4 (Hierarchical Dense Subtensors (HDS-tensors)). For any k ∈
bKe, the subtensors Bk−1 and Bk are in two adjacent hierarchies, it is required that,

i) density: the densities should be significantly different from each other, that is, for
some η > 1, ρ(Bk) ≥ ηρ(Bk−1).

ii) structure: subtensors in higher hierarchies are more “close-knit” (multi-layer dense
core) Bk 4 Bk−1, i.e., Bk

n ⊆ Bk−1
n ,∀n ∈ bNe.

Thus, all subtensors in K hierarchies consist of Hierarchical Dense Subtensors.

Noteworthy is the fact that it is not feasible to recursively apply off-the-shelf dense
subtensor detection methods to find HDS-tensors since they do not consider the re-
lationship among different blocks, even if possible, it might return trivial results (e.g.
identical dense subtensors across distinct hierarchies); and how to design the overall
objective function to be optimized by the recursive heuristic is also not clear.

Formally, with the indicator vectors collection Xk denoting the dense subtensor Bk,
the HDS-tensors detection problem is defined as follows.

Problem 5 (HDS-tensors Detection). Given: (1) the input N -way tensor R, (2) the
expected density ratio between two adjacent hierarchies η3, (3) the maximum num-
ber of hierarchies K. Find: the indicator vectors collections {X1, . . . ,Xr}, r ≤ K for
hierarchical dense subtensors in the r significant hierarchies.

We require that ρ(Xr) ≥ ηρ(Xr−1) ≥ · · · ≥ ηr−1ρ(X1), and Xr 4 Xr−1 4 · · · 4 X1.
In addition, we define a three-level coordinate (k, n, i) to index the indicator vectors

collections, i.e., X(k,n,i) denotes the i-th scalar element xi of the n-th indicator vector

xn in Xk. Also, X(k,·,·) and X(k,n,·) represent Xk and indicator vector xn of Xk resp..

4 Proposed Method

In this section, we propose CatchCore, which is an optimization based algorithm
to detect the HDS-tensors, and provide analysis for the properties of CatchCore.

3 More generally, we can also set different density ratios between hierarchies rather than the
fixed one parameter for specific concern.
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4.1 Optimization Based Dense Subtensor Detection.

Here, we provide an interpretable instantiation for the entry-plenum metric
based on the volume density. With the indicator vectors collection XB of subtensor
B, the density is represented as ρB = MB

VB
= MB∏

x∈XB
||x||1

, where the volume VB is the

product of the size of indicator vector for each mode, i.e,
∏

x∈XB
||x||1, which equals

to the total number of possible entries (including zeros).
To find the dense subtensor, if we directly maximize the density measure ρB, how-

ever, it leads to some trivial solutions (the entries with maximum measure value, or any
single entry in binary-valued tensor); while maximize the vector-based subtensor mass
defined with Eq.(1) by optimizing XB will also engender another trivial result — the
R itself, since no any size or volume limitation is taken into account.

Intuitively, we need to maximize the mass of entries while minimize the mass of
missing entries in the block. Therefore, we propose the following optimization goal,

max
X:{x1,...,xN}

F(X) = (1 + p)R ×̄X− p
∏

xn∈X

||xn||1 s.t. xn ∈ {0, 1}|Rn|, ∀n ∈ bNe. (3)

where p > 0 is the penalty parameter.
The rationale behind above definition is that each existing entry t in the resultant

subtensor contributes t[C] as itself to F(X), while each missing one t̃ is penalized
by a value of p (i.e. t̃[C] = −p). In this way, the objective function maximize the
total mass in the resultant subtensor while minimizing the total penalty of the missing
entries. Moreover, it is also an instantiation of densest (g, h, φ)-entry-plenum subtensor
by setting g(x) = h(x) = x, φ = p/(1 + p), and SX = VX .

The optimization of the objective function F(·) is an NP-hard problem due to the
combinatorial nature stemming from the binary constraints in Eq.(3). So, we relax
these constraints from a 0-1 integer programming (IP) to a polynomial-time solvable
linear programming (LP) problem, that is, 0|Rn| ≤ xn ≤ 1|Rn|. The relaxed constraint
represents the probability that the slices R(n, an) belonging to the resultant dense block.
Finally, only the attribute value with probability exactly 1 will be selected.

4.2 Hierarchical Dense Subtensors Detection.

Based on the optimization formulation for finding dense subtensor in one hierarchy,
intuitively, we maximize the objective function in Eq.(3) for each hierarchy to detec-

t K hierarchical dense subtensors, i.e. to maximize
∑K
k=1 F(Xk), and also consider

aforementioned prerequisites of HDS-tensors. The density i constraint is represented as
ρXk+1 ≥ ηρXk for the kth hierarchy with density increase ratio η > 1; and for the struc-
ture ii requirement (Bk+1 4 Bk 4 Bk−1), we impose additional constraints on indicator
vectors to prevent identical results, as X(k+1,n,·) ≤ X(k,n,·) ≤ X(k−1,n,·),∀n ∈ bNe. We
assume X0 = X1, XK+1 = X0.

Consequently, the overall optimization formulation is as follows,

max
X1,...,XK

K∑
k=1

F(Xk)

s.t. ρXh+1 ≥ ηρXh , X(h+1,n,·) ≤ X(h,n,·) ≤ X(h−1,n,·). ∀h ∈ bKe; n ∈ bNe.

(4)
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Obviously, this bound-constrained multi-variable nonlinear programming (BMV-NLP)
optimization problem is non-convex and numerically intractable to solve. So we take
following relaxation for the constraint to make it to be a regularization term in the
objective function. Let dk−1 = ηρXk−1 which is a constant w.r.t Xk, so the regu-
larization term can be written as (also with entry-plenum form), G(Xk) = R ×̄Xk −
dk−1∏N

n=1

∣∣∣∣X(k,n,·)
∣∣∣∣

1
. Thus, the objective function with relaxation constraints for HDS-

tensors detection is given by

max
X1,...,XK

K∑
k=1

F(Xk) + λ

K∑
j=2

G(Xj)

s.t. X(h+1,n,·) ≤ X(h,n,·) ≤ X(h−1,n,·). ∀h ∈ bKe; n ∈ bNe.

(5)

where the parameter λ controls the importance of the regularization term.

F̄(Xk) = (1 + p+ λ)R ×̄Xk − (p+ λdk−1)

N∏
n=1

∣∣∣∣X(k,n,·)
∣∣∣∣

1
,

then the objective function in Eq.(5) can be rewritten as F(X1) +
∑K
k=2 F̄(Xk). We

can see that in F̄ , a larger penalty parameter is imposed to the missing entries of the
kth hierarchy compared with that of the (k − 1)

th
hierarchy (k ≥ 2), aiming at engaging

the density diversity for different hierarchies.

4.3 Optimization Algorithms.

In this section, we first explain the optimization techniques, and then present the
algorithm CatchCore to solve the problem. Algorithm 1 summarizes the complete
structure of CatchCore.

Using the programming methods to solve the BMV-NLP optimization problem, the
objective in Eq.(5) is a non-convex and higher-order bounded function with respect to
each indicator vectors collection X(k,·,·), which allows us to apply the alternative update
method where we fix all variables of other hierarchies as constants except the current
collections in each iteration; the similar strategy is also used to update each indicator
vector X(k,n,·) alternatively.

Based on the structure constraint, for any dimension n ∈ bNe, the feasible solution
X(k,n,·) is bounded by the indicator vectors X(k−1,n,·) and X(k+1,n,·) of two adjacent hi-

erarchies in the high-dimensional space. we relax these constraints to 0|Rn| ≤ X(k,n,·) ≤
X(k−1,n,·) for optimizing, thus we can obtain X1,X2, · · · ,XK in order. That is, we first

get X1 with the constraints {0|Rn| ≤ X(1,n,·) ≤ 1|Rn|,∀n ∈ bNe} by ignoring the

constraints of other variables in other Xks, then we obtain X2 based on the result at
the first step under the constraints {0|Rn| ≤ X(2,n,·) ≤ X(1,n,·),∀n ∈ bNe} and also
ignore other constraints. In this way, we can solve the K dense subtensors detection sub-
problems hierarchy-by-hierarchy. Technically, we adopt trust-region approach[6] to solve
each nonlinear box-constrained programming subproblem. We rewrite the optimization
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Algorithm 1 CatchCore for HDS-tensors detection

Input: (1) the N -way tensor: R (2) the maximum number of hierarchies: K
(3) the penalty value for each missing entry: p
(4) the density ratio between two adjacent hierarchies: η
(5) the regularization parameter: λ (6) maximum number of iterations: tmax

Output: The dense subtensors indicator vector collections: {X1, · · · ,Xr}.
1: initialize X1, · · · ,XK as Xinit

(k,n,·)
2: t← 1, r ← 1
3: while t ≤ tmax and Eq. (7) is not satisfied do B stop criteria

B Gauss-Seidel method updating
4: for k ← 1 . . .K do B for the kth hierarchy
5: for n← 1 . . . N do B for the nth dimension
6: xkn ← OneWayOpt (xkn)

7: update Xk

8: t← t+ 1

9: while r ≤ K do B select significant subtensors
10: S = {X(r,n,·); maxX(r,n,·) < 1, ∀n ∈ bNe}
11: if S 6= ∅ then
12: break B no significant subtensors for hierarchies > r
13: else:
14: r ← r + 1

15: return the resultant r indicator vector collections {X1, · · · ,Xr}.

problem in Eq.(5) as,

min
X1,...,XK

f(X1, . . . ,XK) = −(1 + p)R ×̄X(1,·,·) + p

N∏
n=1

∣∣∣∣X(1,n,·)
∣∣∣∣

1

− (1 + p+ λ)

K∑
k=2

R ×̄X(k,·,·) +

K∑
k=2

(p+ λdk−1)

N∏
n=1

∣∣∣∣X(k,n,·)
∣∣∣∣

1

s.t. X(h+1,n,·) ≤ X(h,n,·) ≤ X(h−1,n,·). ∀h ∈ bKe; n ∈ bNe.

(6)

We use the alternative projected gradient descent[17, 18] method that is simple and
efficient to solve the optimization problem. For any dimension n, we denote the gradient
of Eq.(1) w.r.t xn as

∇xnMB = R ×̄(−n) XB = R×1 x1 · · · ×(n−1) x(n−1) ×(n+1) x(n+1) · · · ×N xN ,

so the gradient of f(·) w.r.t x1
n (X(1,n,·)) and xkn (X(k,n,·), k ≥ 2) are

∇x1
n
f = −(1 + p)∇x1

n
MX1 + p

∏
xn∈X1/{x1

n}

||xn||1 1,

∇xk
n
f = −(1 + p+ λ)∇xk

n
MXk + (p+ λdk−1)

∏
xn∈Xk/{xk

n}

||xn||1 1

where 1 is a |Rn|-dimensional all-ones vector (i.e. the same size as x1
n and xkn). Let xn

be the current iterator vector of any kth hierarchy in the projected gradient approach,
the new iterator is given by x̃n = P (xn−α∇xn

f) update rule. Here, the operator P (·)
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projects the vector back to the bounded feasible region (as above mentioned), −∇xnf
is the gradient-related search direction, and α is a step size computed e.g. by means of
an Armijo step size strategy. In the case of an Armijo’s rule line search, a good step
size α is chosen until the following condition is satisfied.

f(·,Xk
xn→x̃n

, ·)− f(·,Xk, ·) ≤ σ(∇xnf)T (x̃n − xn)

where Xk
xn→x̃n

means replacing the indicator vector xn with the updated version x̃n
in Xk, and a common choice of the parameter σ (0 < σ < 1) is 0.01. Thus we can
alternatively update each indicator vector xn for the current kth-hierarchy, and the
details are listed in OneWayOpt algorithm in supplement.

We propose CatchCore algorithm to solve the programming optimization problem
in Eq.(6), First, we initialize the indicator vectors collection with rules that the prob-
abilities of selecting the slices R(n, an) (i.e. Xinit

(k,n,i)) are 0.5 in the 1st hierarchy and
0.01 in other hierarchies. In this way, we can fairly avoid some trivial results. To make
the solution to be close to the stationary point regarding convergence, we apply the fol-
lowing common condition as a stop criteria for the bounded-constrained optimization
method besides the limitation for total iterations tmax.∣∣∣∣∣∣{∇Pxk

n
f ; ∀n, k

}∣∣∣∣∣∣
2
≤ ε

∣∣∣∣∣∣∣∣{∇PXinit
(k,n,·)

f ; ∀n, k
}∣∣∣∣∣∣∣∣

2

, (7)

where ∇Pxk
n
f is the elementwise projected gradient defined as (for the i-th element)

(∇Pxk
n
f)i =


min(0, (∇Pxk

n
f)i) if X(k,n,i) = X(k+1,n,i),

(∇Pxk
n
f)i if X(k+1,n,i) < X(k,n,i) < X(k−1,n,i),

max(0, (∇Pxk
n
f)i) if X(k,n,i) = X(k−1,n,i).

Then CatchCore calls OneWayOpt to alternatively updating all the indicator vector
for each dimension and hierarchy iteratively. In final, we only select these significant
subtensors (the top r of K hierarchies) to return (Line 9− 14).

4.4 Parameter Evaluation.

The penalty value p for missing entries controls the resultant lowest density, and the
ratio parameter η affects density-diversity and the number of hierarchies in final. Thus,
it is a challenging problem to set them appropriately or evaluate the quality of detection
result under some parameter configuration, especially in the un-supervised application.
We propose to measure the result w.r.t different parameter settings based on the Min-
imum Description Length (MDL). In the principle manner, we compute the number
of bits needed to encode the tensor R with detected hierarchical dense subtensors for
selecting the best model (parameters), achieving the shortest code length. Intuitively,
the less missing entries and the more accurate of detecting hierarchies, lead to the fewer
bits needed to encode R in a lossless compression employing the characterization.

For the indicator vector X(k,n,·) (k ∈ bKe, n ∈ bNe) we can adopt Huffman or
arithmetic coding to encode the binary string, which formally can be viewed as a se-
quence of realizations of a binomial random variable X. Due to X(k,n,·) ≤ X(k−1,n,·),

we only consider the overlapping part x̄kn = {X(k,n,i); X(k−1,n,i) = 1,∀i ∈ b|R|ne}



10 W.J. Feng, S.H. Liu, X.Q. Cheng

to avoid redundant encoding of 0s. We denote the entropy of indicator vector x as:
H(x) = −

∑
q∈{0,1} P (X = q) logP (X = q), where P (X = q) = nq/ ||x||1 and nq is the

number of q in x. The description length for indicator vectors collection Xk is4:

L(Xk) =

N∑
n=1

(
log∗

∣∣∣∣X(k,n,·)
∣∣∣∣

1
+
∣∣∣∣X(k−1,n,·)

∣∣∣∣
1
·H(x̄kn)

)
.

Assume that XK+1 = X0, For the dense subtensor Bk defined by Xk, we only

need to encode the entries in B̄
k

= Bk − Bk+1 due to Bk+1 4 Bk, based on some

probability distribution. For the entry t ∈ B̄
k
, specifically, if t[C] ∈ {0, 1}, t is sampled

from binomial distribution; and if t[C] ∈ N≥0, we instead model the data by using the

Poisson distribution [13] parameterized by the density of B̄
k
, i.e. ρ

B̄
k . Therefore the

code length for encoding B̄
k

is

L(B̄
k
) = −

∑
q∈{t[C];t∈B̄k}

nq · logP (X = q) + Cpara,

where P (X = q) is the probability of q in the probability distribution function P, and
Cpara is for encoding the parameters of P (like the mean in Poisson).

As for the residual part R̄ = R−B1, we use Huffman coding to encode its entries
considering the sparsity and discrete properties, the code length is denoted as Lε.

Putting all together, we can write the total code length for representing the tensor
R with the resultant K hierarchies indicator vectors collections as:

L(R;X1, . . . ,XK) = log∗K +

N∑
n=1

log∗ |Rn|+
K∑
k=1

L(Xk) + L(B̄
k
) + Lε. (8)

To get the optimal parameters, we can heuristically conduct a grid search over
possible values and pick the configuration that minimizes MDL. We demonstrate that
the parameters according to the MDL principle results in optimal quality of detecting
HDS-tensors, and the search space is limited.

4.5 Analysis.

In this section, we provide the analysis for the convergence, the time and space
complexity of CatchCore. The details of proofs refer to the supplement.

Lemma 6 states the convergence properties of the gradient method for CatchCore.

Lemma 6. CatchCore algorithm converges to a critical point.

Theorem 7 states the time complexity of CatchCore algorithm, which is linear
with K, N , and nnz(R) — the number of non-zero entries in R. And the space com-
plexity is given in Theorem 8.

Theorem 7 (Worst-case Time Complexity). Let tals be the number of iterations
for Armoji’s line search used in the OneWayOpt Algorithm for updating any indicator
vector, the worst-case time complexity of the CatchCore Algorithm 1 is O(K ·N ·tmax ·
tals · (nnz(R) + c ·DR)).

4 log∗ x is the universal code length for an integer x.[20].
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Table 1. Summary of real-world datasets.

Name Size card(R) nnz(R)

Ratings: users × items × timestamps × rating → #reviews

Android 1.32M × 61.3K × 1.28K × 5 1.38M 2.23M
BeerAdvocate 26.5K × 50.8K × 1,472 × 1 78.7K 1.07M
StackOverflow 545K × 96.7K × 1,154 × 1 643K 1.30M

Social network: users × users × timestamps → #interactions

DBLP 1.31M × 1.31M × 72 2.63M 18.9M
Youtube 3.22M × 3.22M × 203 6.45M 18.5M

TCP dumps: IPs × IPs × timestamps → #connections

DARPA 9.48K × 23.4K × 46.6K 79.5K 522K

TCP dumps: duration × protocol × service × · · · → #connections

AirForce 3 × 70 × 11 × 7.20K × 21.5K × 512 × 512 39.7K 863K

Theorem 8 (Memory Requirements). The amount of memory space required by
CatchCore is O(nnz(R) + 2K ·DR).

Parameter Analysis: For the maximum number of significant hierarchies Kmax =

logη(max(R)
ρR

), where max(R) is the maximum value of measure attributes of R. In
practice, we have following observations, which ensure the efficiency of CatchCore,
◦ nnz(R)� DR, and K � Kmax, i.e., there is only few significant hierarchies;
◦ t < tmax, i.e., early stopping for iterations;
◦ a small tals, i.e., few iterations for searching the step size.

and the dimension-update (Line 5) could be solved separately, a situation suitable for
parallel environment.

5 Experiments

We design experiments to answer the following questions:
– Q1. Accuracy: How accurately does CatchCore detect HDS-tensors in synthetic

and real datasets? Does the MDL evaluation select the optimal parameters?
– Q2. Pattern and anomaly detection: What patterns does CatchCore detect

in real-world data? What is behavior of the detected anomalies?
– Q3. Scalability: Does the CatchCore scale linearly with all aspects of data?

5.1 Experimental settings.

Baselines: We selected several state-of-the-art methods for dense-block detection
as the baselines, including D-Cube [23], M-Zoom [22], CrossSpot [13], and CP De-
composition (CPD) [14]. In all experiments, a sparse tensor format was used for efficient
memory usage, and the ρari and ρgeo were used for D-Cube and M-Zoom; we used a
variant of CrossSpot which maximizes the same density metrics and used the CPD
result for seed selection as did in [22].

Data: Table 1 summarizes the real-world datasets in our experiments. In Rating
category, data are 4-way tensors (user ,item, timestamp, rating), where entry values are
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Table 2. Hierarchical subtensors detection results for BeerAdvocate dataset.

K Injected Densities
H1 H2 H3

CC D/M CS CPD CC D M CS CPD CC D M CS CPD

2

0.05 + 0.01 1 1 1 0.999 1 0.121 0.041 0 0.080

–
0.2 + 0.1 1 0 0.236 0.236 1 1 1 1 0.997
0.7 + 0.1 1 0 0.325 0.325 1 1 1 1 0.519

1 + 0.05 1 0 0.784 0.784 1 1 1 1 0.998
1 + 0.2 1 0 0.795 0.795 1 1 1 1 0.999

3
0.2 + 0.1 + 0.05 1 0 0.265 0.265 1 0 0 0 0 1 1 1 1 0.980

1 + 0.2 + 0.01 1 0 0 0 1 0.999 1.0 1.0 0.223 1 0.444 0.431 0.746 0.850
1 + 0.7 + 0.2 1 0 0 0 1 0 0 0.981 0.981 1 1 1 1 0.999

* The algorithm abbreviations mean that CC: CatchCore, D: D-Cube, M: M-Zoom, CS: CrossSpot.
* The injected shape w.r.t density is: 0.01: 1K × 800× 15, 0.05: 800× 600× 10, 0.1: 500× 500× 5, 0.2: 300× 300× 5, 0.7:

200 × 100 × 2, 1: 100 × 80 × 1.

the number of reviews. In Social network, data are 3-way tensors (user, user, times-
tamps), where entry values are the number of interactions (co-authorship / favorite).
DARPA is the TCP dumps represented with a 3-way tensor (source IP, destination
IP, timestamps), where entry values are the number of connections between two IP ad-
dresses (hosts). AirForce is also a network intrusion dataset for a typical U.S Air Force
LAN, which is represented as a 7-way tensor (protocol, service, src bytes, dst bytes, flag,
host count, src count, #connections). Timestamps are in minutes for DARPA, in dates
for Ratings and Youtube, and in years for DBLP.

5.2 Q1. Accuracy.

We compare how accurately each method detects injected dense subtensors in the
synthetic and real-world datasets.

We randomly and uniformly generated a 5K × 5K × 2K 3-way tensor R with a
density of 3 ·10−6. Into R, one 200×300×100 block is injected with distinct density, for
testing the detection bound of each method. Fig. 1(c) demonstrated that CatchCore
effectively detects block as low as a tenth of the density that the best baselines detect,
which means that our method can spot such fraudsters with more adversarial effort.

We then injected K subtensors with different size and density into BeerAdvocate
and synthetic tensor R in a hierarchical manner. Table 2 lists the result for former (the
result for synthetic data is listed in the supplement), where H1 is the densest or the
first subtensor detected by methods, and the density (order) decreases (increases) from
H1 to H3, and the information of injected blocks is listed at the bottom. CatchCore
can accurately detect all injected subtensors in various hierarchies, size and density
diversity, and consistently outperforms other baselines which fail to accurately detect
or even miss at least one block. D-Cube and M-Zoom have similar accuracy (except
some special cases as highlighted), they can not identify the structure of dense blocks,
leading to some of the sparsest or densest injected blocks are missed or overwhelmed by
large-volume result. CrossSpot and CPD also do not find hierarchical dense subtensors
accurately. Similar conclusions can be drawn for the synthetic dataset.

Moreover, CatchCore can also accurately detect non-overlapping blocks and catch
higher density subtensors for the dense blocks with some blanks (or hollows). These
cases are verified by different injection schema and results are omitted for space.
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Fig. 2. (a) CatchCore detects higher-density blocks, which contain suspicious behaviors that
users in the top 2 blocks create abnormal large friendship with others within an hour, and
outperforms other competitors. (d) The optimal hierarchies achieve the lowest MDL cost w.r.t
the parameter p and η. CatchCore can obtain optimal hierarchical dense subtensors for a
wide parameters range to some extend. (c) Hierarchical network intrusion behavior between a
pair of IPs on June 18, 1998 in DARPA dataset.

Dense blocks in real data: We apply CatchCore for various real-world datasets,
and measure the density instead of the mass to avoid the trivial results since that
the blocks with higher density contain interesting patterns w.h.p. Fig. 1(d), 2(a) only
show the densities of top four densest blocks found by the methods for DBLP and
Youtube dataset. CatchCore spots denser blocks for each data, where it consistently
outperforms the competitors for all blocks, whose patterns are analyzed in Section 5.3.

MDL-based Evaluation We evaluate the utility of our MDL criterion for mea-
suring the quality of hierarchies returned by CatchCore under different parameter
configurations. In this experiment, the BeerAdvocate data with 3 hierarchical inject-
ed dense blocks (the second case in Table 2 when K = 3) is used, we computed the
MDL cost for the detection result by varying a pair of parameters p and η, the result
is shown in Fig. 2. The optimal hierarchies achieve the lowest MDL cost w.r.t p and η.
In addition, our model can obtain optimal results for a wide range of parameters.

5.3 Q2. Pattern and anomaly detection.

Anomaly detection. CatchCore detected network intrusion in TCP dumps with
high accuracy and identified attack patterns for DARPA and AirForce dataset, where
each intrusion connection are labeled. Table 3 compares the accuracy of each method.
CatchCore outperformed competitors for DARPA data, and also spotted the hier-
archical behavior pattern of Neptune attack in H1 - H3, which are composed of the
connections in different time for a pair of IPs. Fig. 2(c) shows the attack pattern snip-
pet occurred during 7am - 8am on June 18, 1998. The densities (attack intensity) vary
greatly over different hierarchies, i.e. the density in H1 is about 5K, while it is only
about 3K for remain parts in H3. And the intense attacks represented cyclic patterns
in 5 minutes. Although, the hierarchical structure of all subtensors include almost ma-
licious connections (with recall = 98%) with the cost of containing some false positive
samples, CatchCore achieves comparable performance for AirForce dataset.

CatchCore also discerned denser and more anomaly subtensors. For the Youtube
dataset in Fig. 2(a), these dense blocks are missed by other competitors. Especially, the
block with highest-density (H1) represents one user became friend with 904 different
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Table 3. CatchCore identifies network attacks from the real-world TCP Dumps dataset
with best or comparable performance in F-measure (Left); it spots different hierarchical dense
blocks with interesting patterns for DARPA (Right).

DARPA AirForce

CPD 0.167 0.785
CrossSpot 0.822 0.785
M-Zoom 0.826 0.906
D-Cube 0.856 0.940

CatchCore 0.877 0.902

H Subtensor Shape Anomaly Ratio

1 1× 1× 96 100%
2 1× 1× 100 100%
3 1× 1× 274 100%

4 16× 5 × 24.7K 87.0%
5 171× 15× 29.2K 85.4%

users in one day, the other user in H2 also created connections with 475 users at the
same time. So, these two users more likely a fraudulent or bot accounts. The densest
block in StackOverflow data shows one user marked 257 posts as the favorite in one
day, which is too much than the normality. CatchCore detects holistically optimal
multi-layers dense subtensors and the densest one is only part of it rather than our
direct target. The volume density metric tends to non-empty blocks and may result
in some locally 1D slices (may not the densest slices within the whole tensor) in the
highest-density layer. Using other density metrics could eliminate this issue.

Evolving community pattern. As the Fig. 1(d), 1(b) show the evolving co-
authorship structure of dense subtensors in the top 4 densest hierarchies for DBLP
dataset, corresponding to the interaction between 20 researchers during 2007 to 2013,
and Fig. 1(d) also presents their densities. The block in H1 with the size 8 × 8 × 3,
consists of research cooperation between Leonard Barolli, Makoto Takizawa, and
Fatos Xhafa, etc. during 2011 to 2013 in ‘Algorithm and Distributed System’ field and
the average connection between them is more than 10.7 in each year, forming a high-
density clique. Also, the subtensors in other hierarchies are extended with their other
common co-authors and years, and contain relatively less connections than H1, but the
density of blocks in H4 is also more than 2. Therefore, CatchCore can cater to detect
evolving community structures at different scales in a hierarchical fashion.

5.4 Q3. Scalability.

Empirically, we show that CatchCore scales (sub-) linearly with every aspect of
input, i.e., the number of tuples, the number of dimension attributes, and the cardinality
of dimension attributes we aim to find. To measure the scalability with each factor, we
started with finding the injected subtensor with two hierarchies, which are 100×100×2
with density 0.2 and 50×50×1 with density 1.0, in a randomly generated tensor R which
contains 1 millions tuples with three attributes whose total cardinality is 100K. Then,
we measured the running time as we changed one factor at a time. As seen in Fig. 1(e)
and result in supplement, CatchCore scales linearly with the number of tuples and
the number of attributes, it also scales sub-linearly with the cardinalities of attributes,
which illustrates the complexity of CatchCore in Theorem 7 is too pessimistic.

6 Related work

Dense Subgraph / Subtensor Detection in Tensor. The detection of dense-
subgraph has been extensively studied [4, 8, 12], and many algorithms for the NP-hard
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problem are applied to detect community structure [3, 5, 30] and anomaly [1, 11], or
extend to multi-aspect data [22, 23]. CrossSpot [13] finds suspicious dense blocks
by adjusting the seed in a greedy way until converges to a local optimum. Tensor de-
composition such as HOSVD and CP decomposition [14] are also used to spot dense
subtensors. M-Zoom [22] and D-Cube [23] adopt greedy approximation algorithms
with quality guarantees to detect dense-subtensors for large-scale tensors. [24] spots
dense subtensors for tensor stream with an incremental algorithm. None of these meth-
ods consider the relationship and structures of different blocks, and can not trace the
evolving of dense subtensors or the hierarchical patterns.

Hierarchical Patterns Mining. Communities exit ubiquitously in various graphs
[5, 16], their evolving behavior and hierarchical structure also have been explored in dif-
ferent scenes [15, 19, 28, 29]. [9] proposed a framework for joint learning the overlapping
structure and activity period of communities. [25] detected video event with hierarchical
temporal association mining mechanism for multimedia applications. HiDDen [30] de-
tects hierarchical dense patterns on graph and also finds financial frauds. [21] uses k-core
decomposition to compute the hierarchy of dense subgraphs given by peeling algorith-
m. Our method can deal with multi-aspect data, provide an information-theoretical
measurement for the result, and advanced analyze for the performance.

Anomaly and Fraudulent Detection. The survey [1] provides a structured
overview and summary for the methods of detection anomaly in graphs. The dense-
subgraphs or dense-subtensors usually contain suspicious patterns, such as fraudsters
in social network [11, 27, 30], port-scanning activities in network analysis [13, 23], and
lockstep behaviors or vandalism [13, 23, 24].

7 Conclusions

In this work, we propose CatchCore algorithm to detect the hierarchical dense
subtensors with gradient optimization strategy, based on an novel and interpretable
uniform framework for dense block detection, in large tensor. CatchCore accurately
detects dense blocks and hierarchical dense subtensors for the synthetic and real data,
and outperforms state-of-the-art baseline methods, it can identify anomaly behaviors
and interesting patterns, like periodic attack and dynamic researcher group. In addition,
CatchCore also scales up linearly in term of all aspects of tensor.
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